Answer :
We start with the equation
[tex]$$
-\frac{1}{2}x + 4 = x + 1.
$$[/tex]
Step 1. Clear the Fraction
Multiply both sides by 2 to eliminate the fraction:
[tex]$$
2\left(-\frac{1}{2}x + 4\right) = 2(x + 1).
$$[/tex]
This simplifies to
[tex]$$
-x + 8 = 2x + 2.
$$[/tex]
Step 2. Collect the [tex]\(x\)[/tex]-terms
Subtract [tex]\(2x\)[/tex] from both sides so that all terms containing [tex]\(x\)[/tex] are on one side:
[tex]$$
-x - 2x + 8 = 2.
$$[/tex]
This gives
[tex]$$
-3x + 8 = 2.
$$[/tex]
Step 3. Isolate the [tex]\(x\)[/tex]-term
Subtract 8 from both sides to isolate the term with [tex]\(x\)[/tex]:
[tex]$$
-3x = 2 - 8,
$$[/tex]
which simplifies to
[tex]$$
-3x = -6.
$$[/tex]
Step 4. Solve for [tex]\(x\)[/tex]
Divide both sides by [tex]\(-3\)[/tex]:
[tex]$$
x = \frac{-6}{-3} = 2.
$$[/tex]
Thus, the solution to the equation
[tex]$$
-\frac{1}{2}x + 4 = x + 1
$$[/tex]
is
[tex]$$
x = 2.
$$[/tex]
[tex]$$
-\frac{1}{2}x + 4 = x + 1.
$$[/tex]
Step 1. Clear the Fraction
Multiply both sides by 2 to eliminate the fraction:
[tex]$$
2\left(-\frac{1}{2}x + 4\right) = 2(x + 1).
$$[/tex]
This simplifies to
[tex]$$
-x + 8 = 2x + 2.
$$[/tex]
Step 2. Collect the [tex]\(x\)[/tex]-terms
Subtract [tex]\(2x\)[/tex] from both sides so that all terms containing [tex]\(x\)[/tex] are on one side:
[tex]$$
-x - 2x + 8 = 2.
$$[/tex]
This gives
[tex]$$
-3x + 8 = 2.
$$[/tex]
Step 3. Isolate the [tex]\(x\)[/tex]-term
Subtract 8 from both sides to isolate the term with [tex]\(x\)[/tex]:
[tex]$$
-3x = 2 - 8,
$$[/tex]
which simplifies to
[tex]$$
-3x = -6.
$$[/tex]
Step 4. Solve for [tex]\(x\)[/tex]
Divide both sides by [tex]\(-3\)[/tex]:
[tex]$$
x = \frac{-6}{-3} = 2.
$$[/tex]
Thus, the solution to the equation
[tex]$$
-\frac{1}{2}x + 4 = x + 1
$$[/tex]
is
[tex]$$
x = 2.
$$[/tex]