Answer :
Marcus starts with an initial balance of [tex]$-\$[/tex]25[tex]$. When he deposits $[/tex]\[tex]$40$[/tex], his balance becomes
[tex]$$-\$25 + \$40.$$[/tex]
After this deposit, he withdraws [tex]$\$[/tex]15[tex]$, so his final balance is calculated by
$[/tex][tex]$-\$[/tex]25 + \[tex]$40 - \$[/tex]15.[tex]$$
We can simplify the expression step by step:
1. First, add $-\$25$ and $\$40$:
$$[/tex]-\[tex]$25 + \$[/tex]40 = \[tex]$15.$[/tex][tex]$
2. Then, subtract $[/tex]\[tex]$15$[/tex] from [tex]$\$[/tex]15[tex]$:
$[/tex][tex]$\$[/tex]15 - \[tex]$15 = \$[/tex]0.[tex]$$
Thus, his new account balance is $\$0$, and the correct equation is
$$[/tex]-25 + 40 - 15 = 0.[tex]$$[/tex]
This matches option A.
[tex]$$-\$25 + \$40.$$[/tex]
After this deposit, he withdraws [tex]$\$[/tex]15[tex]$, so his final balance is calculated by
$[/tex][tex]$-\$[/tex]25 + \[tex]$40 - \$[/tex]15.[tex]$$
We can simplify the expression step by step:
1. First, add $-\$25$ and $\$40$:
$$[/tex]-\[tex]$25 + \$[/tex]40 = \[tex]$15.$[/tex][tex]$
2. Then, subtract $[/tex]\[tex]$15$[/tex] from [tex]$\$[/tex]15[tex]$:
$[/tex][tex]$\$[/tex]15 - \[tex]$15 = \$[/tex]0.[tex]$$
Thus, his new account balance is $\$0$, and the correct equation is
$$[/tex]-25 + 40 - 15 = 0.[tex]$$[/tex]
This matches option A.