Answer :
Let's solve the problem step-by-step:
We want to find the product of [tex]\((4x)(-3x^8)(-7x^3)\)[/tex].
1. Multiply the Constants:
First, multiply the constant numbers together:
[tex]\[
4 \times (-3) \times (-7) = 4 \times 21 = 84
\][/tex]
2. Multiply the Variables:
Next, we need to multiply the [tex]\(x\)[/tex] terms. When multiplying terms with the same base, you add the exponents. So, for the exponents, we have:
[tex]\[
x^1 \times x^8 \times x^3 = x^{1+8+3} = x^{12}
\][/tex]
3. Combine the Results:
Combine the constant result with the variable result:
[tex]\[
84x^{12}
\][/tex]
Thus, the product is [tex]\(84x^{12}\)[/tex].
Looking at the choices given:
- [tex]\(-84 x^{12}\)[/tex]
- [tex]\(-84 x^{24}\)[/tex]
- [tex]\(84 x^{12}\)[/tex]
- [tex]\(84 x^{24}\)[/tex]
The correct answer is [tex]\(84 x^{12}\)[/tex].
We want to find the product of [tex]\((4x)(-3x^8)(-7x^3)\)[/tex].
1. Multiply the Constants:
First, multiply the constant numbers together:
[tex]\[
4 \times (-3) \times (-7) = 4 \times 21 = 84
\][/tex]
2. Multiply the Variables:
Next, we need to multiply the [tex]\(x\)[/tex] terms. When multiplying terms with the same base, you add the exponents. So, for the exponents, we have:
[tex]\[
x^1 \times x^8 \times x^3 = x^{1+8+3} = x^{12}
\][/tex]
3. Combine the Results:
Combine the constant result with the variable result:
[tex]\[
84x^{12}
\][/tex]
Thus, the product is [tex]\(84x^{12}\)[/tex].
Looking at the choices given:
- [tex]\(-84 x^{12}\)[/tex]
- [tex]\(-84 x^{24}\)[/tex]
- [tex]\(84 x^{12}\)[/tex]
- [tex]\(84 x^{24}\)[/tex]
The correct answer is [tex]\(84 x^{12}\)[/tex].