High School

Karissa begins to solve the equation:

[tex]\[

\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4)

\][/tex]

Her work is correct and is shown below:

[tex]\[

\begin{array}{c}

\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4) \\

\frac{1}{2} x-7+11=\frac{1}{2} x-x+4 \\

\frac{1}{2} x+4=-\frac{1}{2} x+4

\end{array}

\][/tex]

When she subtracts 4 from both sides, [tex]\(\frac{1}{2} x=-\frac{1}{2} x\)[/tex] results. What is the value of [tex]\(x\)[/tex]?

A. [tex]\(-1\)[/tex]
B. [tex]\(-\frac{1}{2}\)[/tex]
C. [tex]\(0\)[/tex]
D. [tex]\(\frac{1}{2}\)[/tex]

Answer :

To solve the equation [tex]\(\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)\)[/tex], we can go through each step:

1. Distribute and simplify each side:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)
\][/tex]

- On the left side: Distribute [tex]\(\frac{1}{2}\)[/tex] over [tex]\(x-14\)[/tex]:
[tex]\[
\frac{1}{2}x - 7 + 11
\][/tex]
Simplify it to:
[tex]\[
\frac{1}{2}x + 4
\][/tex]

- On the right side: Distribute the negative sign over [tex]\(x-4\)[/tex]:
[tex]\[
\frac{1}{2}x - (x-4) = \frac{1}{2}x - x + 4
\][/tex]
Simplify it to:
[tex]\[
-\frac{1}{2}x + 4
\][/tex]

2. Set the simplified expressions equal:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]

3. Subtract 4 from both sides:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]

4. Solve for [tex]\(x\)[/tex]:
To solve this, add [tex]\(\frac{1}{2}x\)[/tex] to both sides to eliminate the [tex]\(x\)[/tex] terms on the right:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]

This becomes:
[tex]\[
x = 0
\][/tex]

The value of [tex]\(x\)[/tex] is 0.