Answer :
To understand what [tex]\( C(76.1) \)[/tex] represents, let's break down the function you're working with.
The function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex] is used to convert temperatures from degrees Fahrenheit to degrees Celsius. In this case, [tex]\( F \)[/tex] is the temperature in Fahrenheit that you want to convert.
### Step-by-step Solution:
1. Identify the given Fahrenheit temperature:
Kareem measured the high temperature as [tex]\( 76.1^\circ \)[/tex] Fahrenheit.
2. Substitute [tex]\( F \)[/tex] with 76.1 in the conversion formula:
Plug [tex]\( F = 76.1 \)[/tex] into the function [tex]\( C(F) \)[/tex].
3. Perform the calculation using the conversion formula:
[tex]\[
C(76.1) = \frac{5}{9} \times (76.1 - 32)
\][/tex]
4. Simplify the expression inside the parentheses:
[tex]\[
76.1 - 32 = 44.1
\][/tex]
5. Perform the multiplication:
[tex]\[
\frac{5}{9} \times 44.1 \approx 24.5
\][/tex]
The result of the calculation shows that [tex]\( C(76.1) \approx 24.5 \)[/tex].
### Conclusion:
- What does [tex]\( C(76.1) \)[/tex] represent?
[tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.
Thus, the correct interpretation of the function in this context is that it tells you how to convert the Fahrenheit temperature value into Celsius, resulting in approximately 24.5 degrees Celsius.
The function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex] is used to convert temperatures from degrees Fahrenheit to degrees Celsius. In this case, [tex]\( F \)[/tex] is the temperature in Fahrenheit that you want to convert.
### Step-by-step Solution:
1. Identify the given Fahrenheit temperature:
Kareem measured the high temperature as [tex]\( 76.1^\circ \)[/tex] Fahrenheit.
2. Substitute [tex]\( F \)[/tex] with 76.1 in the conversion formula:
Plug [tex]\( F = 76.1 \)[/tex] into the function [tex]\( C(F) \)[/tex].
3. Perform the calculation using the conversion formula:
[tex]\[
C(76.1) = \frac{5}{9} \times (76.1 - 32)
\][/tex]
4. Simplify the expression inside the parentheses:
[tex]\[
76.1 - 32 = 44.1
\][/tex]
5. Perform the multiplication:
[tex]\[
\frac{5}{9} \times 44.1 \approx 24.5
\][/tex]
The result of the calculation shows that [tex]\( C(76.1) \approx 24.5 \)[/tex].
### Conclusion:
- What does [tex]\( C(76.1) \)[/tex] represent?
[tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.
Thus, the correct interpretation of the function in this context is that it tells you how to convert the Fahrenheit temperature value into Celsius, resulting in approximately 24.5 degrees Celsius.