College

Karissa begins to solve the equation:

[tex]\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4).[/tex]

Her work is correct and is shown below:

[tex]
\begin{align*}
\frac{1}{2}(x-14) + 11 & = \frac{1}{2}x - (x-4) \\
\frac{1}{2}x - 7 + 11 & = \frac{1}{2}x - x + 4 \\
\frac{1}{2}x + 4 & = -\frac{1}{2}x + 4
\end{align*}
[/tex]

When she subtracts 4 from both sides, [tex]\frac{1}{2}x = -\frac{1}{2}x[/tex] results. What is the value of [tex]x[/tex]?

A. -1
B. [tex]-\frac{1}{2}[/tex]
C. 0
D. [tex]\frac{1}{2}[/tex]

Answer :

Sure! Let's solve the equation step-by-step.

The original equation is:

[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x - 4)
\][/tex]

1. Distribute on the left side:

- Start with [tex]\(\frac{1}{2}(x-14)\)[/tex]. When you distribute [tex]\(\frac{1}{2}\)[/tex], you get:

[tex]\[
\frac{1}{2}x - \frac{1}{2} \times 14 = \frac{1}{2}x - 7
\][/tex]

- Add 11 to [tex]\(\frac{1}{2}x - 7\)[/tex]:

[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x + 4
\][/tex]

2. Simplify the right side:

- The right side [tex]\(\frac{1}{2}x - (x-4)\)[/tex] becomes:

[tex]\[
\frac{1}{2}x - x + 4
\][/tex]

- Combine the terms:

[tex]\[
(-\frac{1}{2}x) + 4
\][/tex]

3. At this point, the equation is:

[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]

4. Subtract 4 from both sides:

[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]

5. Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to combine like terms:

[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]

- This simplifies to:

[tex]\[
x = 0
\][/tex]

So, the value of [tex]\(x\)[/tex] is [tex]\(0\)[/tex].