Answer :
To solve the given equation [tex]\(\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4)\)[/tex], let's go through the steps:
1. Distribute and Simplify Both Sides:
- On the left side, distribute [tex]\(\frac{1}{2}\)[/tex]:
[tex]\[
\frac{1}{2} \cdot (x - 14) + 11 = \frac{1}{2}x - 7 + 11
\][/tex]
- Simplify by combining constants on the left side:
[tex]\[
\frac{1}{2}x + 4
\][/tex]
- On the right side, distribute the negative sign:
[tex]\[
\frac{1}{2}x - (x - 4) = \frac{1}{2}x - x + 4
\][/tex]
- Simplify:
[tex]\[
-\frac{1}{2}x + 4
\][/tex]
2. Set the Simplified Expressions Equal:
- Now we have:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]
3. Subtract 4 from Both Sides:
- This eliminates the constant terms, yielding:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]
4. Combine Like Terms:
- Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to eliminate the negative term:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]
- Simplify by combining like terms:
[tex]\[
x = 0
\][/tex]
Therefore, the value of [tex]\(x\)[/tex] is [tex]\(0\)[/tex].
1. Distribute and Simplify Both Sides:
- On the left side, distribute [tex]\(\frac{1}{2}\)[/tex]:
[tex]\[
\frac{1}{2} \cdot (x - 14) + 11 = \frac{1}{2}x - 7 + 11
\][/tex]
- Simplify by combining constants on the left side:
[tex]\[
\frac{1}{2}x + 4
\][/tex]
- On the right side, distribute the negative sign:
[tex]\[
\frac{1}{2}x - (x - 4) = \frac{1}{2}x - x + 4
\][/tex]
- Simplify:
[tex]\[
-\frac{1}{2}x + 4
\][/tex]
2. Set the Simplified Expressions Equal:
- Now we have:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]
3. Subtract 4 from Both Sides:
- This eliminates the constant terms, yielding:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]
4. Combine Like Terms:
- Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to eliminate the negative term:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]
- Simplify by combining like terms:
[tex]\[
x = 0
\][/tex]
Therefore, the value of [tex]\(x\)[/tex] is [tex]\(0\)[/tex].