College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Karissa begins to solve the equation

\[ \frac{1}{2}(x-14) + 11 = \frac{1}{2} x - (x-4) \]

Her work is correct and is shown below:

\[
\begin{align*}
\frac{1}{2}(x-14) + 11 &= \frac{1}{2} x - (x-4) \\
\frac{1}{2} x - 7 + 11 &= \frac{1}{2} x - x + 4 \\
\frac{1}{2} x + 4 &= -\frac{1}{2} x + 4 \\
\end{align*}
\]

When she subtracts 4 from both sides,

\[ \frac{1}{2} x = -\frac{1}{2} x \]

results. What is the value of [tex]x[/tex]?

A. \(-1\)
B. \(\frac{1}{2}\)
C. \(0\)
D. \(1\)

Answer :

We start with the equation
[tex]$$
\frac{1}{2}(x-14)+11=\frac{1}{2}x-(x-4).
$$[/tex]

Step 1: Expand both sides.

For the left side, distribute [tex]$\frac{1}{2}$[/tex]:
[tex]$$
\frac{1}{2}(x-14)=\frac{1}{2}x-\frac{14}{2}=\frac{1}{2}x-7.
$$[/tex]
Then add 11:
[tex]$$
\frac{1}{2}x-7+11=\frac{1}{2}x+4.
$$[/tex]

For the right side, distribute the negative sign as well:
[tex]$$
\frac{1}{2}x-(x-4)=\frac{1}{2}x-x+4=-\frac{1}{2}x+4.
$$[/tex]

Step 2: Write the simplified equation:
[tex]$$
\frac{1}{2}x+4=-\frac{1}{2}x+4.
$$[/tex]

Step 3: Remove the constant term (4) from both sides by subtracting 4:
[tex]$$
\frac{1}{2}x=-\frac{1}{2}x.
$$[/tex]

Step 4: Solve for [tex]$x$[/tex] by adding [tex]$\frac{1}{2}x$[/tex] to both sides:
[tex]$$
\frac{1}{2}x+\frac{1}{2}x=0 \quad \Longrightarrow \quad x=0.
$$[/tex]

Thus, the solution for [tex]$x$[/tex] is:
[tex]$$
\boxed{0}.
$$[/tex]