Answer :
To convert the pressure from atmospheres (atm) to kilopascals (kPa), we use the conversion factor:
[tex]$$
1\text{ atm} = 101.325\text{ kPa}
$$[/tex]
Given that the pressure is [tex]$2.42\text{ atm}$[/tex], we multiply by the conversion factor:
[tex]$$
P_{\text{kPa}} = 2.42\text{ atm} \times 101.325\text{ kPa/atm}
$$[/tex]
Carrying out the multiplication:
[tex]$$
P_{\text{kPa}} \approx 245.2065\text{ kPa}
$$[/tex]
Rounding to the nearest whole number, the pressure is approximately:
[tex]$$
245\text{ kPa}
$$[/tex]
Thus, the pressure in kilopascals is [tex]$\boxed{245\text{ kPa}}$[/tex].
[tex]$$
1\text{ atm} = 101.325\text{ kPa}
$$[/tex]
Given that the pressure is [tex]$2.42\text{ atm}$[/tex], we multiply by the conversion factor:
[tex]$$
P_{\text{kPa}} = 2.42\text{ atm} \times 101.325\text{ kPa/atm}
$$[/tex]
Carrying out the multiplication:
[tex]$$
P_{\text{kPa}} \approx 245.2065\text{ kPa}
$$[/tex]
Rounding to the nearest whole number, the pressure is approximately:
[tex]$$
245\text{ kPa}
$$[/tex]
Thus, the pressure in kilopascals is [tex]$\boxed{245\text{ kPa}}$[/tex].