Answer :
We start with the formula for the perimeter of a rectangle:
[tex]$$
P = 2(\ell + w)
$$[/tex]
Given that the perimeter is [tex]$120\text{ cm}$[/tex] and the length [tex]$\ell$[/tex] is [tex]$42\text{ cm}$[/tex], we substitute these values into the equation:
[tex]$$
120 = 2(42 + w)
$$[/tex]
Next, we expand the right-hand side:
[tex]$$
120 = 84 + 2w
$$[/tex]
To isolate the term in [tex]$w$[/tex], subtract [tex]$84$[/tex] from both sides:
[tex]$$
120 - 84 = 2w
$$[/tex]
Simplifying the left-hand side gives:
[tex]$$
2w = 120 - 84
$$[/tex]
This matches option C.
[tex]$$
P = 2(\ell + w)
$$[/tex]
Given that the perimeter is [tex]$120\text{ cm}$[/tex] and the length [tex]$\ell$[/tex] is [tex]$42\text{ cm}$[/tex], we substitute these values into the equation:
[tex]$$
120 = 2(42 + w)
$$[/tex]
Next, we expand the right-hand side:
[tex]$$
120 = 84 + 2w
$$[/tex]
To isolate the term in [tex]$w$[/tex], subtract [tex]$84$[/tex] from both sides:
[tex]$$
120 - 84 = 2w
$$[/tex]
Simplifying the left-hand side gives:
[tex]$$
2w = 120 - 84
$$[/tex]
This matches option C.