Answer :
To solve the problem, we need to evaluate the function [tex]\( f(x) = x^2 - 2x + 7 \)[/tex] at [tex]\( x = 5 \)[/tex]. Let's calculate step by step:
1. Substitute [tex]\( x = 5 \)[/tex] into the function:
[tex]\[
f(5) = (5)^2 - 2(5) + 7
\][/tex]
2. Calculate [tex]\( (5)^2 \)[/tex]:
[tex]\[
5^2 = 25
\][/tex]
3. Calculate [tex]\( 2 \times 5 \)[/tex]:
[tex]\[
2 \times 5 = 10
\][/tex]
4. Substitute these values back into the expression:
[tex]\[
f(5) = 25 - 10 + 7
\][/tex]
5. Simplify the expression:
[tex]\[
25 - 10 = 15
\][/tex]
[tex]\[
15 + 7 = 22
\][/tex]
Therefore, the value of [tex]\( f(5) \)[/tex] is 22. It appears there might be a misunderstanding with the choices provided, but based on our calculation, [tex]\( f(5) = 22 \)[/tex].
1. Substitute [tex]\( x = 5 \)[/tex] into the function:
[tex]\[
f(5) = (5)^2 - 2(5) + 7
\][/tex]
2. Calculate [tex]\( (5)^2 \)[/tex]:
[tex]\[
5^2 = 25
\][/tex]
3. Calculate [tex]\( 2 \times 5 \)[/tex]:
[tex]\[
2 \times 5 = 10
\][/tex]
4. Substitute these values back into the expression:
[tex]\[
f(5) = 25 - 10 + 7
\][/tex]
5. Simplify the expression:
[tex]\[
25 - 10 = 15
\][/tex]
[tex]\[
15 + 7 = 22
\][/tex]
Therefore, the value of [tex]\( f(5) \)[/tex] is 22. It appears there might be a misunderstanding with the choices provided, but based on our calculation, [tex]\( f(5) = 22 \)[/tex].