College

If [tex]f(4) = 246.4[/tex] when [tex]r = 0.04[/tex] for the function [tex]f(t) = P e^t[/tex], then what is the approximate value of [tex]P[/tex]?

A. 50
B. 210
C. 1220
D. 289

Answer :

We are given the function

[tex]$$
f(t) = P e^{rt},
$$[/tex]

with the function value at [tex]$t=4$[/tex] provided as

[tex]$$
f(4) = 246.4,
$$[/tex]

and the rate [tex]$r = 0.04$[/tex]. Substituting [tex]$t = 4$[/tex] into the function, we have

[tex]$$
246.4 = P e^{0.04 \cdot 4}.
$$[/tex]

Notice that [tex]$0.04 \cdot 4 = 0.16$[/tex], so the equation becomes

[tex]$$
246.4 = P e^{0.16}.
$$[/tex]

To solve for [tex]$P$[/tex], divide both sides by [tex]$e^{0.16}$[/tex]:

[tex]$$
P = \frac{246.4}{e^{0.16}}.
$$[/tex]

Evaluating [tex]$e^{0.16}$[/tex] gives approximately 1.17351. Therefore,

[tex]$$
P \approx \frac{246.4}{1.17351} \approx 210.
$$[/tex]

Thus, the approximate value of [tex]$P$[/tex] is [tex]$\boxed{210}$[/tex].