High School

Differentiate the following functions:

57. \( y = -9 \ln x \)

58. \( y = -8 \ln x \)

59. \( y = 7 \ln |x| \)

60. \( y = 4 \ln [x] \)

61. \( y = x^4 \ln x - 3x^4 \)

62. \( y = x^4 \ln x - x^2 \)

63. \( f(x) = \ln (9x) \)

64. \( f(x) = \ln (6x) \)

65. \( f(x) = \ln 15x \)

66. \( f(x) = \ln |10x| \)

67. \( g(x) = x \ln (3x) \)

68. \( g(x) = x \ln (7x) \)

69. \( g(x) = x \ln |6x| \)

70. \( g(x) = x^2 \ln 2x \)

Answer :

The problems present mathematical series where each equation requires the application of differentiation. The derivative of y = n ln(x) is y' = n/x. The application of derivative rules enables solving these problems.

Here are the derivatives of the given functions:

57. y = -9 ln x

dy/dx = -9/x

58. y = -8 ln x

dy/dx = -8/x

59. y = 7 ln |x|

dy/dx = 7/x (for x > 0)

dy/dx = -7/x (for x < 0)

60. y = 4 ln [x]

dy/dx = 4/x

61. y = [tex]x^{(ln x)}- 3x^2[/tex]

dy/dx = (ln x + 1) * [tex]x^{(ln x)}[/tex] - 6x

62. y = [tex]x^4[/tex] ln x - {[tex]x^3[/tex]}

dy/dx = [tex]4x^3 ln x - 3x^2[/tex]

63. f(x) = ln (9x)

f'(x) = 1/x

64. f(x) = ln (6x)

f'(x) = 1/x

65. f(x) = ln (15x)

f'(x) = 1/x

66. f(x) = ln |10x|

f'(x) = 1/x (for x > 0)

f'(x) = -1/x (for x < 0)

67. g(x) =[tex]x^{(ln (3x))}[/tex]

g'(x) = (ln (3x) + 1) * [tex]x^{(ln (3x))}[/tex] + [tex]x^{(ln (3x)) }[/tex]* (1/x) * 3

68. g(x) = x * ln (7x)

g'(x) = ln (7x) + x * (1/x) * 7

69. g(x) = x + ln (6x)

g'(x) = 1 + 1/x * 6

70. g(x) = [tex]x^0[/tex]* ln (2x)

g'(x) = 0 * ln (2x) + [tex]x^0[/tex] * (1/x) * 2

Please note that ln represents the natural logarithm, [x] represents the floor function, and |x| represents the absolute value of x. Also, remember to apply proper domain restrictions where applicable.

Learn more about the derivative here:

brainly.com/question/35315661

#SPJ11

the question is :

Differentiate.

57. y = -9 ln x

59. y = 7 ln x

58. y=-8 ln x

60. y = 4 ln x

61. y=x Inx-4x+

62. y = x+ Inx - x²

63. f(x) = ln (9x)

64. f(x) = In (6x)

65. f(x) = In 5x

66. f(x) = In 10x

67. g(x) = x5 In (3x)

69. g(x) = x In |6x|

68. g(x) = x² In (7x)

70. g(x) = x In |2x|