Answer :
To solve for [tex]\( c \)[/tex] in the equation [tex]\( f = c \cdot d^3 \)[/tex], follow these steps:
1. Identify the given values:
- [tex]\( f = 450 \)[/tex]
- [tex]\( d = 10 \)[/tex]
2. Calculate [tex]\( d^3 \)[/tex]:
- Since [tex]\( d = 10 \)[/tex], compute [tex]\( d^3 = 10^3 \)[/tex].
- Hence, [tex]\( 10^3 = 1000 \)[/tex].
3. Substitute [tex]\( f \)[/tex] and [tex]\( d^3 \)[/tex] into the equation:
- You have the equation [tex]\( 450 = c \cdot 1000 \)[/tex].
4. Solve for [tex]\( c \)[/tex]:
- To get [tex]\( c \)[/tex] by itself, divide both sides of the equation by 1000:
[tex]\[
c = \frac{450}{1000}
\][/tex]
5. Calculate [tex]\( c \)[/tex]:
- Simplify the fraction to find [tex]\( c \)[/tex]:
[tex]\[
c = 0.45
\][/tex]
Thus, the value of [tex]\( c \)[/tex] is 0.45.
1. Identify the given values:
- [tex]\( f = 450 \)[/tex]
- [tex]\( d = 10 \)[/tex]
2. Calculate [tex]\( d^3 \)[/tex]:
- Since [tex]\( d = 10 \)[/tex], compute [tex]\( d^3 = 10^3 \)[/tex].
- Hence, [tex]\( 10^3 = 1000 \)[/tex].
3. Substitute [tex]\( f \)[/tex] and [tex]\( d^3 \)[/tex] into the equation:
- You have the equation [tex]\( 450 = c \cdot 1000 \)[/tex].
4. Solve for [tex]\( c \)[/tex]:
- To get [tex]\( c \)[/tex] by itself, divide both sides of the equation by 1000:
[tex]\[
c = \frac{450}{1000}
\][/tex]
5. Calculate [tex]\( c \)[/tex]:
- Simplify the fraction to find [tex]\( c \)[/tex]:
[tex]\[
c = 0.45
\][/tex]
Thus, the value of [tex]\( c \)[/tex] is 0.45.