College

Given the sequence [tex]-2 \frac{2}{3}, -5 \frac{1}{3}, -10 \frac{2}{3}, -21 \frac{1}{3}, -42 \frac{2}{3}, \ldots[/tex], which formula can be used to describe the sequence?

A. [tex]f(x+1) = -2 f(x)[/tex]

B. [tex]f(x+1) = -\frac{1}{2} f(x)[/tex]

C. [tex]f(x+1) = \frac{1}{2} f(x)[/tex]

D. [tex]f(x+1) = 2 f(x)[/tex]

Answer :

We start with the sequence

[tex]$$
-2\frac{2}{3},\quad -5\frac{1}{3},\quad -10\frac{2}{3},\quad -21\frac{1}{3},\quad -42\frac{2}{3},\quad \ldots
$$[/tex]

Step 1. Convert mixed numbers to improper fractions.

For each term, we write it as an improper fraction:

- The first term:
[tex]$$
-2\frac{2}{3} = -\left(2 + \frac{2}{3}\right) = -\frac{6+2}{3} = -\frac{8}{3}.
$$[/tex]

- The second term:
[tex]$$
-5\frac{1}{3} = -\left(5 + \frac{1}{3}\right) = -\frac{15+1}{3} = -\frac{16}{3}.
$$[/tex]

- The third term:
[tex]$$
-10\frac{2}{3} = -\left(10 + \frac{2}{3}\right) = -\frac{30+2}{3} = -\frac{32}{3}.
$$[/tex]

- The fourth term:
[tex]$$
-21\frac{1}{3} = -\left(21 + \frac{1}{3}\right) = -\frac{63+1}{3} = -\frac{64}{3}.
$$[/tex]

- The fifth term:
[tex]$$
-42\frac{2}{3} = -\left(42 + \frac{2}{3}\right) = -\frac{126+2}{3} = -\frac{128}{3}.
$$[/tex]

So, the sequence in improper fractions is

[tex]$$
-\frac{8}{3}, \quad -\frac{16}{3}, \quad -\frac{32}{3}, \quad -\frac{64}{3}, \quad -\frac{128}{3}, \quad \ldots
$$[/tex]

Step 2. Determine the pattern between consecutive terms.

We look at the ratio of a term to its preceding term. For example, compute the ratio of the second term to the first term:

[tex]$$
\text{Ratio} = \frac{-\frac{16}{3}}{-\frac{8}{3}} = \frac{16}{8} = 2.
$$[/tex]

Check another pair:

[tex]$$
\text{Ratio} = \frac{-\frac{32}{3}}{-\frac{16}{3}} = \frac{32}{16} = 2.
$$[/tex]

Since the ratio between consecutive terms is always [tex]$2$[/tex], the sequence is geometric with common ratio [tex]$2$[/tex].

Step 3. Write the recurrence relation.

For a geometric sequence, each term is obtained by multiplying the previous term by the common ratio. The general recurrence relation is

[tex]$$
f(x+1) = r \cdot f(x).
$$[/tex]

Since [tex]$r = 2$[/tex], we have

[tex]$$
f(x+1) = 2f(x).
$$[/tex]

Conclusion:

The formula that describes the sequence is

[tex]$$
f(x+1) = 2f(x).
$$[/tex]