Answer :
Sure! Let's solve the problem step-by-step:
We are given a polynomial function:
[tex]\[ F(x) = x^2 - 2x - 7 \][/tex]
We need to find the value of [tex]\( F(-5) \)[/tex].
To do this, we will substitute [tex]\( x = -5 \)[/tex] into the polynomial function and calculate:
1. Start with the expression:
[tex]\[ F(x) = x^2 - 2x - 7 \][/tex]
2. Substitute [tex]\(-5\)[/tex] for [tex]\(x\)[/tex]:
[tex]\[ F(-5) = (-5)^2 - 2(-5) - 7 \][/tex]
3. Calculate each part:
- [tex]\((-5)^2 = 25\)[/tex]
- [tex]\(-2(-5) = 10\)[/tex]
4. Substitute these values back into the expression:
[tex]\[ F(-5) = 25 + 10 - 7 \][/tex]
5. Simplify:
[tex]\[ F(-5) = 35 - 7 \][/tex]
6. Final calculation:
[tex]\[ F(-5) = 28\][/tex]
So, the value of [tex]\( F(-5) \)[/tex] is 28. The correct answer is B. 28.
We are given a polynomial function:
[tex]\[ F(x) = x^2 - 2x - 7 \][/tex]
We need to find the value of [tex]\( F(-5) \)[/tex].
To do this, we will substitute [tex]\( x = -5 \)[/tex] into the polynomial function and calculate:
1. Start with the expression:
[tex]\[ F(x) = x^2 - 2x - 7 \][/tex]
2. Substitute [tex]\(-5\)[/tex] for [tex]\(x\)[/tex]:
[tex]\[ F(-5) = (-5)^2 - 2(-5) - 7 \][/tex]
3. Calculate each part:
- [tex]\((-5)^2 = 25\)[/tex]
- [tex]\(-2(-5) = 10\)[/tex]
4. Substitute these values back into the expression:
[tex]\[ F(-5) = 25 + 10 - 7 \][/tex]
5. Simplify:
[tex]\[ F(-5) = 35 - 7 \][/tex]
6. Final calculation:
[tex]\[ F(-5) = 28\][/tex]
So, the value of [tex]\( F(-5) \)[/tex] is 28. The correct answer is B. 28.