Answer :
To find the value of [tex]\( c \)[/tex] when [tex]\( f = c \cdot d^3 \)[/tex], and given [tex]\( f = 450 \)[/tex] and [tex]\( d = 10 \)[/tex], we can follow these steps:
1. Understand the Formula: We have the equation [tex]\( f = c \cdot d^3 \)[/tex]. Our goal is to find the value of [tex]\( c \)[/tex].
2. Substitute the Known Values: We know that [tex]\( f = 450 \)[/tex] and [tex]\( d = 10 \)[/tex]. Substitute these values into the equation:
[tex]\[
450 = c \cdot (10)^3
\][/tex]
3. Calculate [tex]\( d^3 \)[/tex]:
[tex]\[
10^3 = 1000
\][/tex]
4. Substitute and Simplify: Replace [tex]\( 10^3 \)[/tex] with 1000 in the equation:
[tex]\[
450 = c \cdot 1000
\][/tex]
5. Solve for [tex]\( c \)[/tex]: To find [tex]\( c \)[/tex], divide both sides of the equation by 1000:
[tex]\[
c = \frac{450}{1000}
\][/tex]
6. Simplify the Fraction:
[tex]\[
c = 0.45
\][/tex]
Therefore, the value of [tex]\( c \)[/tex] is [tex]\( 0.45 \)[/tex].
1. Understand the Formula: We have the equation [tex]\( f = c \cdot d^3 \)[/tex]. Our goal is to find the value of [tex]\( c \)[/tex].
2. Substitute the Known Values: We know that [tex]\( f = 450 \)[/tex] and [tex]\( d = 10 \)[/tex]. Substitute these values into the equation:
[tex]\[
450 = c \cdot (10)^3
\][/tex]
3. Calculate [tex]\( d^3 \)[/tex]:
[tex]\[
10^3 = 1000
\][/tex]
4. Substitute and Simplify: Replace [tex]\( 10^3 \)[/tex] with 1000 in the equation:
[tex]\[
450 = c \cdot 1000
\][/tex]
5. Solve for [tex]\( c \)[/tex]: To find [tex]\( c \)[/tex], divide both sides of the equation by 1000:
[tex]\[
c = \frac{450}{1000}
\][/tex]
6. Simplify the Fraction:
[tex]\[
c = 0.45
\][/tex]
Therefore, the value of [tex]\( c \)[/tex] is [tex]\( 0.45 \)[/tex].