Answer :
Sure! Let's find the distance between Platform B and Platform C step-by-step.
To calculate the distance between two points in a coordinate plane, we use the distance formula:
[tex]\[ \text{distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Here's what each variable represents:
- [tex]\((x_1, y_1)\)[/tex] are the coordinates of Platform B.
- [tex]\((x_2, y_2)\)[/tex] are the coordinates of Platform C.
Now, follow these steps:
1. Identify the coordinates of the platforms:
Suppose Platform B's coordinates are [tex]\((x_1, y_1)\)[/tex] and Platform C's coordinates are [tex]\((x_2, y_2)\)[/tex].
2. Plug the coordinates into the distance formula:
[tex]\[ \text{distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
3. Subtract the coordinates:
- Calculate [tex]\((x_2 - x_1)\)[/tex]
- Calculate [tex]\((y_2 - y_1)\)[/tex]
4. Square the differences:
- [tex]\((x_2 - x_1)^2\)[/tex]
- [tex]\((y_2 - y_1)^2\)[/tex]
5. Add the squared differences:
[tex]\[ (x_2 - x_1)^2 + (y_2 - y_1)^2 \][/tex]
6. Take the square root of the sum:
[tex]\[ \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
7. Round the result to the nearest tenth of a meter.
Let's go through an example calculation:
Suppose the coordinates are:
- Platform B: [tex]\((3, 4)\)[/tex]
- Platform C: [tex]\((7, 1)\)[/tex]
Using the distance formula step-by-step:
1. Subtract the coordinates:
- [tex]\(x_2 - x_1 = 7 - 3 = 4\)[/tex]
- [tex]\(y_2 - y_1 = 1 - 4 = -3\)[/tex]
2. Square the differences:
- [tex]\(4^2 = 16\)[/tex]
- [tex]\((-3)^2 = 9\)[/tex]
3. Add the squared differences:
- [tex]\(16 + 9 = 25\)[/tex]
4. Take the square root of the sum:
- [tex]\(\sqrt{25} = 5\)[/tex]
The distance between Platform B and Platform C is 5 meters.
After rounding to the nearest tenth, the distance remains 5.0 meters.
Hence, the distance you travel from Platform B to Platform C is approximately 5.0 meters.
To calculate the distance between two points in a coordinate plane, we use the distance formula:
[tex]\[ \text{distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Here's what each variable represents:
- [tex]\((x_1, y_1)\)[/tex] are the coordinates of Platform B.
- [tex]\((x_2, y_2)\)[/tex] are the coordinates of Platform C.
Now, follow these steps:
1. Identify the coordinates of the platforms:
Suppose Platform B's coordinates are [tex]\((x_1, y_1)\)[/tex] and Platform C's coordinates are [tex]\((x_2, y_2)\)[/tex].
2. Plug the coordinates into the distance formula:
[tex]\[ \text{distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
3. Subtract the coordinates:
- Calculate [tex]\((x_2 - x_1)\)[/tex]
- Calculate [tex]\((y_2 - y_1)\)[/tex]
4. Square the differences:
- [tex]\((x_2 - x_1)^2\)[/tex]
- [tex]\((y_2 - y_1)^2\)[/tex]
5. Add the squared differences:
[tex]\[ (x_2 - x_1)^2 + (y_2 - y_1)^2 \][/tex]
6. Take the square root of the sum:
[tex]\[ \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
7. Round the result to the nearest tenth of a meter.
Let's go through an example calculation:
Suppose the coordinates are:
- Platform B: [tex]\((3, 4)\)[/tex]
- Platform C: [tex]\((7, 1)\)[/tex]
Using the distance formula step-by-step:
1. Subtract the coordinates:
- [tex]\(x_2 - x_1 = 7 - 3 = 4\)[/tex]
- [tex]\(y_2 - y_1 = 1 - 4 = -3\)[/tex]
2. Square the differences:
- [tex]\(4^2 = 16\)[/tex]
- [tex]\((-3)^2 = 9\)[/tex]
3. Add the squared differences:
- [tex]\(16 + 9 = 25\)[/tex]
4. Take the square root of the sum:
- [tex]\(\sqrt{25} = 5\)[/tex]
The distance between Platform B and Platform C is 5 meters.
After rounding to the nearest tenth, the distance remains 5.0 meters.
Hence, the distance you travel from Platform B to Platform C is approximately 5.0 meters.