Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Which of these polynomials could have [tex](x-2)[/tex] as a factor?

A. [tex]A(x) = 6x^2 - 7x - 5[/tex]

B. [tex]B(x) = 3x^2 + 15x - 42[/tex]

C. [tex]C(x) = 2x^3 + 13x^2 + 16x + 5[/tex]

D. [tex]D(x) = 3x^3 - 2x^2 - 15x + 14[/tex]

E. [tex]E(x) = 8x^4 - 41x^3 - 18x^2 + 101x + 70[/tex]

F. [tex]F(x) = x^4 + 5x^3 - 27x^2 - 101x - 70[/tex]

Answer :

To determine which polynomials have [tex]\( (x-2) \)[/tex] as a factor, we can use the Factor Theorem. The Factor Theorem states that a polynomial has [tex]\( (x-c) \)[/tex] as a factor if and only if substituting [tex]\( x=c \)[/tex] into the polynomial results in [tex]\( 0 \)[/tex].

Let's check each polynomial by substituting [tex]\( x=2 \)[/tex] into them and see if the result is zero.

1. Polynomial A(x) = [tex]\(6x^2 - 7x - 5\)[/tex]:

Substitute [tex]\( x = 2 \)[/tex]:

[tex]\[
6(2)^2 - 7(2) - 5 = 6(4) - 14 - 5 = 24 - 14 - 5 = 5
\][/tex]

Since 5 is not equal to 0, [tex]\( (x-2) \)[/tex] is not a factor of A(x).

2. Polynomial B(x) = [tex]\(3x^2 + 15x - 42\)[/tex]:

Substitute [tex]\( x = 2 \)[/tex]:

[tex]\[
3(2)^2 + 15(2) - 42 = 3(4) + 30 - 42 = 12 + 30 - 42 = 0
\][/tex]

Since the result is 0, [tex]\( (x-2) \)[/tex] is a factor of B(x).

3. Polynomial C(x) = [tex]\(2x^3 + 13x^2 + 16x + 5\)[/tex]:

Substitute [tex]\( x = 2 \)[/tex]:

[tex]\[
2(2)^3 + 13(2)^2 + 16(2) + 5 = 2(8) + 13(4) + 32 + 5 = 16 + 52 + 32 + 5 = 105
\][/tex]

Since 105 is not equal to 0, [tex]\( (x-2) \)[/tex] is not a factor of C(x).

4. Polynomial D(x) = [tex]\(3x^3 - 2x^2 - 15x + 14\)[/tex]:

Substitute [tex]\( x = 2 \)[/tex]:

[tex]\[
3(2)^3 - 2(2)^2 - 15(2) + 14 = 3(8) - 2(4) - 30 + 14 = 24 - 8 - 30 + 14 = 0
\][/tex]

Since the result is 0, [tex]\( (x-2) \)[/tex] is a factor of D(x).

5. Polynomial E(x) = [tex]\(8x^4 - 41x^3 - 18x^2 + 101x + 70\)[/tex]:

Substitute [tex]\( x = 2 \)[/tex]:

[tex]\[
8(2)^4 - 41(2)^3 - 18(2)^2 + 101(2) + 70 = 8(16) - 41(8) - 18(4) + 202 + 70 = 0
\][/tex]

Since the result is 0, [tex]\( (x-2) \)[/tex] is a factor of E(x).

6. Polynomial F(x) = [tex]\(x^4 + 5x^3 - 27x^2 - 101x - 70\)[/tex]:

Substitute [tex]\( x = 2 \)[/tex]:

[tex]\[
(2)^4 + 5(2)^3 - 27(2)^2 - 101(2) - 70 = 16 + 40 - 108 - 202 - 70 = -324
\][/tex]

Since -324 is not equal to 0, [tex]\( (x-2) \)[/tex] is not a factor of F(x).

In conclusion, the polynomials that have [tex]\( (x-2) \)[/tex] as a factor are:

- Polynomial B(x): [tex]\(3x^2 + 15x - 42\)[/tex]
- Polynomial D(x): [tex]\(3x^3 - 2x^2 - 15x + 14\)[/tex]
- Polynomial E(x): [tex]\(8x^4 - 41x^3 - 18x^2 + 101x + 70\)[/tex]