College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ For [tex]\( f(x) = x^5 \)[/tex] and [tex]\( g(x) = \sqrt[5]{x} \)[/tex], complete the table for [tex]\( g(x) \)[/tex]:

[tex]\[

\begin{array}{|c|c|}

\hline

x & g(x) \\

\hline

-3125 & \\

\hline

-1024 & \\

\hline

-243 & \\

\hline

-32 & \\

\hline

-1 & \\

\hline

0 & \\

\hline

1 & \\

\hline

32 & \\

\hline

243 & \\

\hline

1024 & \\

\hline

3125 & \\

\hline

\end{array}

\][/tex]

Answer :

To fill in the table for the function [tex]\( g(x) = \sqrt[5]{x} \)[/tex], which finds the fifth root of [tex]\( x \)[/tex], we can simply evaluate [tex]\( g(x) \)[/tex] for each given value of [tex]\( x \)[/tex].

Here's the calculated value for each [tex]\( x \)[/tex]:

1. When [tex]\( x = -3125 \)[/tex], [tex]\( g(x) = -14.62 \)[/tex].
2. When [tex]\( x = -1024 \)[/tex], [tex]\( g(x) = -10.08 \)[/tex].
3. When [tex]\( x = -243 \)[/tex], [tex]\( g(x) = -6.24 \)[/tex].
4. When [tex]\( x = -32 \)[/tex], [tex]\( g(x) = -3.17 \)[/tex].
5. When [tex]\( x = -1 \)[/tex], [tex]\( g(x) = -1 \)[/tex].
6. When [tex]\( x = 0 \)[/tex], [tex]\( g(x) = 0 \)[/tex].
7. When [tex]\( x = 1 \)[/tex], [tex]\( g(x) = 1 \)[/tex].
8. When [tex]\( x = 32 \)[/tex], [tex]\( g(x) = 2 \)[/tex].
9. When [tex]\( x = 243 \)[/tex], [tex]\( g(x) = 3 \)[/tex].
10. When [tex]\( x = 1024 \)[/tex], [tex]\( g(x) = 4 \)[/tex].
11. When [tex]\( x = 3125 \)[/tex], [tex]\( g(x) = 5 \)[/tex].

Here's how you fill out the table on your sheet:

[tex]\[
\begin{array}{|c|c|}
\hline
x & g (x) \\
\hline
-3125 & -14.62 \\
\hline
-1024 & -10.08 \\
\hline
-243 & -6.24 \\
\hline
-32 & -3.17 \\
\hline
-1 & -1 \\
\hline
0 & 0 \\
\hline
1 & 1 \\
\hline
32 & 2 \\
\hline
243 & 3 \\
\hline
1024 & 4 \\
\hline
3125 & 5 \\
\hline
\end{array}
\][/tex]

This table represents the fifth root of each number [tex]\( x \)[/tex], which gives the values of the function [tex]\( g(x) = \sqrt[5]{x} \)[/tex].