Answer :
Let's solve each part of the problem step-by-step.
(a) Solve for [tex]x[/tex] in the equation:
[tex]200(1.1)^x = 20000[/tex]
Divide both sides by 200 to simplify the equation:
[tex](1.1)^x = \frac{20000}{200}[/tex]
[tex](1.1)^x = 100[/tex]
Apply logarithms to both sides to solve for [tex]x[/tex]:
[tex]\log((1.1)^x) = \log(100)[/tex]
Use the logarithmic identity: [tex]\log(a^b) = b \cdot \log(a)[/tex]
[tex]x \cdot \log(1.1) = \log(100)[/tex]
Solve for [tex]x[/tex]:
[tex]x = \frac{\log(100)}{\log(1.1)}[/tex]
Calculate the logarithms:
[tex]x = \frac{2}{0.0414}[/tex] (using [tex]\log_{10}[/tex] approximately)
[tex]x \approx 48.31[/tex]
Thus, [tex]x \approx 48.31[/tex].
(b) Solve for [tex]x[/tex] in the equation:
[tex]5^x = 2(3)^x[/tex]
Rewrite the right side by separating the terms:
[tex]5^x = 2 \cdot 3^x[/tex]
Divide both sides by [tex]3^x[/tex]:
[tex]\left( \frac{5}{3} \right)^x = 2[/tex]
Apply logarithms to both sides:
[tex]\log((\frac{5}{3})^x) = \log(2)[/tex]
Use the logarithmic identity:
[tex]x \cdot \log(\frac{5}{3}) = \log(2)[/tex]
Solve for [tex]x[/tex]:
[tex]x = \frac{\log(2)}{\log(\frac{5}{3})}[/tex]
Calculate the logarithms:
[tex]x \approx \frac{0.3010}{0.2220}[/tex] (using [tex]\log_{10}[/tex] approximately)
[tex]x \approx 1.356[/tex]
Therefore, [tex]x \approx 1.356[/tex].