Answer :
To find the value of [tex]\( 124 \times 56 \)[/tex], let's follow these steps carefully:
1. Break Down the Multiplication:
We can utilize the distributive property of multiplication over addition to make the calculation easier by breaking one of the numbers into parts. We'll break down 56 into 50 and 6, so:
[tex]\[
124 \times 56 = 124 \times (50 + 6)
\][/tex]
2. Apply the Distributive Property:
Distribute 124 to both 50 and 6:
[tex]\[
124 \times (50 + 6) = (124 \times 50) + (124 \times 6)
\][/tex]
3. Calculate Each Part Separately:
- First, calculate [tex]\( 124 \times 50 \)[/tex]:
[tex]\[
124 \times 50 = 124 \times (5 \times 10) = (124 \times 5) \times 10
\][/tex]
[tex]\[
124 \times 5 = 620
\][/tex]
[tex]\[
620 \times 10 = 6200
\][/tex]
- Next, calculate [tex]\( 124 \times 6 \)[/tex]:
[tex]\[
124 \times 6 = 744
\][/tex]
4. Add the Results Together:
[tex]\[
124 \times 56 = 6200 + 744
\][/tex]
[tex]\[
6200 + 744 = 6944
\][/tex]
So, the value of [tex]\( 124 \times 56 \)[/tex] is [tex]\( 6944 \)[/tex].
1. Break Down the Multiplication:
We can utilize the distributive property of multiplication over addition to make the calculation easier by breaking one of the numbers into parts. We'll break down 56 into 50 and 6, so:
[tex]\[
124 \times 56 = 124 \times (50 + 6)
\][/tex]
2. Apply the Distributive Property:
Distribute 124 to both 50 and 6:
[tex]\[
124 \times (50 + 6) = (124 \times 50) + (124 \times 6)
\][/tex]
3. Calculate Each Part Separately:
- First, calculate [tex]\( 124 \times 50 \)[/tex]:
[tex]\[
124 \times 50 = 124 \times (5 \times 10) = (124 \times 5) \times 10
\][/tex]
[tex]\[
124 \times 5 = 620
\][/tex]
[tex]\[
620 \times 10 = 6200
\][/tex]
- Next, calculate [tex]\( 124 \times 6 \)[/tex]:
[tex]\[
124 \times 6 = 744
\][/tex]
4. Add the Results Together:
[tex]\[
124 \times 56 = 6200 + 744
\][/tex]
[tex]\[
6200 + 744 = 6944
\][/tex]
So, the value of [tex]\( 124 \times 56 \)[/tex] is [tex]\( 6944 \)[/tex].