Answer :
We start with the equation
[tex]$$151 = (18 \times 8) + \text{unknown}.$$[/tex]
Step 1: Calculate the product.
Multiply [tex]$18$[/tex] by [tex]$8$[/tex]:
[tex]$$18 \times 8 = 144.$$[/tex]
Step 2: Substitute the product into the equation.
Replace [tex]$(18 \times 8)$[/tex] with [tex]$144$[/tex]:
[tex]$$151 = 144 + \text{unknown}.$$[/tex]
Step 3: Solve for the unknown.
To isolate the unknown, subtract [tex]$144$[/tex] from both sides:
[tex]$$\text{unknown} = 151 - 144.$$[/tex]
Step 4: Compute the subtraction.
Subtracting gives:
[tex]$$\text{unknown} = 7.$$[/tex]
Thus, the unknown in the equation is [tex]$7$[/tex].
[tex]$$151 = (18 \times 8) + \text{unknown}.$$[/tex]
Step 1: Calculate the product.
Multiply [tex]$18$[/tex] by [tex]$8$[/tex]:
[tex]$$18 \times 8 = 144.$$[/tex]
Step 2: Substitute the product into the equation.
Replace [tex]$(18 \times 8)$[/tex] with [tex]$144$[/tex]:
[tex]$$151 = 144 + \text{unknown}.$$[/tex]
Step 3: Solve for the unknown.
To isolate the unknown, subtract [tex]$144$[/tex] from both sides:
[tex]$$\text{unknown} = 151 - 144.$$[/tex]
Step 4: Compute the subtraction.
Subtracting gives:
[tex]$$\text{unknown} = 7.$$[/tex]
Thus, the unknown in the equation is [tex]$7$[/tex].