High School

Find the sum of a geometric series for which [tex]$a_1=3125$[/tex], [tex]$a_n=1$[/tex], and [tex]$r=\frac{1}{5}$[/tex].

Answer :

We are given a geometric series with first term

[tex]$$
a_1 = 3125,
$$[/tex]

last term

[tex]$$
a_n = 1,
$$[/tex]

and common ratio

[tex]$$
r = \frac{1}{5}.
$$[/tex]

### Step 1. Determine the Number of Terms

The formula for the [tex]\( n \)[/tex]th term of a geometric series is

[tex]$$
a_n = a_1 \cdot r^{n-1}.
$$[/tex]

Substitute the given values:

[tex]$$
1 = 3125 \cdot \left(\frac{1}{5}\right)^{n-1}.
$$[/tex]

Notice that [tex]\(3125\)[/tex] can be written as [tex]\(5^5\)[/tex] because

[tex]$$
3125 = 5^5.
$$[/tex]

Substitute this into the equation:

[tex]$$
1 = 5^5 \cdot \left(\frac{1}{5}\right)^{n-1}.
$$[/tex]

Recall that [tex]\(\left(\frac{1}{5}\right)^{n-1} = 5^{-(n-1)}\)[/tex]. Therefore, the equation becomes:

[tex]$$
1 = 5^5 \cdot 5^{-(n-1)} = 5^{5 - (n-1)} = 5^{6-n}.
$$[/tex]

Since any power of 5 equals 1 only if the exponent is 0, we have

[tex]$$
6 - n = 0.
$$[/tex]

Thus,

[tex]$$
n = 6.
$$[/tex]

### Step 2. Calculate the Sum of the Series

The sum [tex]\( S_n \)[/tex] of the first [tex]\( n \)[/tex] terms of a geometric series is given by

[tex]$$
S_n = a_1 \cdot \frac{1 - r^n}{1 - r}, \quad \text{for } r \neq 1.
$$[/tex]

Substitute [tex]\( a_1 = 3125 \)[/tex], [tex]\( r = \frac{1}{5} \)[/tex], and [tex]\( n = 6 \)[/tex] into the formula:

[tex]$$
S_6 = 3125 \cdot \frac{1 - \left(\frac{1}{5}\right)^6}{1 - \frac{1}{5}}.
$$[/tex]

#### Compute the Denominator:

[tex]$$
1 - \frac{1}{5} = \frac{5}{5} - \frac{1}{5} = \frac{4}{5}.
$$[/tex]

#### Compute [tex]\( r^n \)[/tex]:

[tex]$$
\left(\frac{1}{5}\right)^6 = \frac{1}{5^6} = \frac{1}{15625}.
$$[/tex]

#### Substitute Back into the Sum Formula:

[tex]$$
S_6 = 3125 \cdot \frac{1 - \frac{1}{15625}}{\frac{4}{5}}.
$$[/tex]

Simplify the numerator:

[tex]$$
1 - \frac{1}{15625} = \frac{15625 - 1}{15625} = \frac{15624}{15625}.
$$[/tex]

The expression for [tex]\( S_6 \)[/tex] is now:

[tex]$$
S_6 = 3125 \cdot \frac{\frac{15624}{15625}}{\frac{4}{5}}.
$$[/tex]

Dividing by a fraction is equivalent to multiplying by its reciprocal:

[tex]$$
S_6 = 3125 \cdot \frac{15624}{15625} \cdot \frac{5}{4}.
$$[/tex]

### Step 3. Write the Final Answer

After performing the arithmetic calculations, we obtain:

[tex]$$
S_6 = 3906.
$$[/tex]

Thus, the sum of the series is

[tex]$$
\boxed{3906}.
$$[/tex]