Answer :
Final answer:
The determinant of the given matrix is 4.
Explanation:
To find the determinant of a 3x3 matrix, we can use the formula:
| a b c |
| d e f | = a(ei - fh) - b(di - fg) + c(dh - eg)
| g h i |
Let's substitute the given values into the formula:
| l a b |
| b d e | = l(ei - fh) - a(di - fg) + b(dh - eg)
| f g h |
Now, let's calculate the determinant:
l(ei - fh) - a(di - fg) + b(dh - eg)
= l(9i - 60h) - a(4i - 60g) + b(4h - 9g)
= 9li - 60lh - 4ai + 60ag + 4bh - 9bg
Since we are given that the determinant is equal to 4, we can set up the equation:
9li - 60lh - 4ai + 60ag + 4bh - 9bg = 4
Now, we can solve this equation to find the values of l, a, b, g, h, and i.
Learn more about determinants here:
https://brainly.com/question/29898039
#SPJ14