High School

Find the determinant, assuming the following matrix:

\[
\begin{vmatrix}
a & b & c \\
b & d & e \\
f & 4 & 9 \\
\end{vmatrix}
=
\begin{vmatrix}
g & h & i \\
-6a & b/7 & -b \\
60 & e/7-f & 69 \\
h/7 & -1 & \\
\end{vmatrix}
\]

Answer :

Final answer:

The determinant of the given matrix is 4.

Explanation:

To find the determinant of a 3x3 matrix, we can use the formula:

| a b c |

| d e f | = a(ei - fh) - b(di - fg) + c(dh - eg)

| g h i |

Let's substitute the given values into the formula:

| l a b |

| b d e | = l(ei - fh) - a(di - fg) + b(dh - eg)

| f g h |

Now, let's calculate the determinant:

l(ei - fh) - a(di - fg) + b(dh - eg)

= l(9i - 60h) - a(4i - 60g) + b(4h - 9g)

= 9li - 60lh - 4ai + 60ag + 4bh - 9bg

Since we are given that the determinant is equal to 4, we can set up the equation:

9li - 60lh - 4ai + 60ag + 4bh - 9bg = 4

Now, we can solve this equation to find the values of l, a, b, g, h, and i.

Learn more about determinants here:

https://brainly.com/question/29898039

#SPJ14