College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Find the derivatives of the following functions.

[tex]
\[
\begin{array}{l}
g(x) = 2x^3 - 7x^2 + 7 \\
f(x) = (2x^3 - 7x^2 + 7)^5
\end{array}
\]
[/tex]

Answer :

Let's find the derivatives of the given functions step-by-step.

### Function 1: [tex]\( g(x) = 2x^3 - 7x^2 + 7 \)[/tex]

To find the derivative of [tex]\( g(x) \)[/tex], we will use the power rule, which states that [tex]\( \frac{d}{dx}[x^n] = nx^{n-1} \)[/tex].

1. Differentiate [tex]\( 2x^3 \)[/tex]:
[tex]\[ \frac{d}{dx}[2x^3] = 2 \cdot 3x^{3-1} = 6x^2 \][/tex]

2. Differentiate [tex]\( -7x^2 \)[/tex]:
[tex]\[ \frac{d}{dx}[-7x^2] = -7 \cdot 2x^{2-1} = -14x \][/tex]

3. The constant term [tex]\( 7 \)[/tex] has a derivative of:
[tex]\[ \frac{d}{dx}[7] = 0 \][/tex]

Combining these results, we get:
[tex]\[ g'(x) = 6x^2 - 14x \][/tex]

### Function 2: [tex]\( f(x) = (2x^3 - 7x^2 + 7)^5 \)[/tex]

To differentiate [tex]\( f(x) \)[/tex], we will use the chain rule. The chain rule states that if [tex]\( h(x) = (u(x))^n \)[/tex], then [tex]\( h'(x) = n(u(x))^{n-1} \cdot u'(x) \)[/tex], where [tex]\( u(x) \)[/tex] is the inner function.

1. Let [tex]\( u(x) = 2x^3 - 7x^2 + 7 \)[/tex]. We already found [tex]\( u'(x) \)[/tex] (which is the same as [tex]\( g'(x) \)[/tex]):

[tex]\[ u'(x) = 6x^2 - 14x \][/tex]

2. Function [tex]\( f(x) \)[/tex] can be written as [tex]\( f(x) = (u(x))^5 \)[/tex]. Applying the chain rule:

[tex]\[ f'(x) = 5(u(x))^4 \cdot u'(x) \][/tex]

Substituting [tex]\( u(x) \)[/tex] and its derivative [tex]\( u'(x) \)[/tex]:

[tex]\[ f'(x) = 5(2x^3 - 7x^2 + 7)^4 \cdot (6x^2 - 14x) \][/tex]

Therefore, the derivative of [tex]\( f(x) \)[/tex] is:

[tex]\[ f'(x) = (30x^2 - 70x)(2x^3 - 7x^2 + 7)^4 \][/tex]

### Summary of Derivatives:
- [tex]\( g'(x) = 6x^2 - 14x \)[/tex]
- [tex]\( f'(x) = (30x^2 - 70x)(2x^3 - 7x^2 + 7)^4 \)[/tex]

These are the derivatives of the functions [tex]\( g(x) \)[/tex] and [tex]\( f(x) \)[/tex] respectively.