Answer :
We start by converting the mixed numbers into improper fractions.
1. The length of cloth is given as
[tex]$$3 \frac{3}{5}.$$[/tex]
Multiply the whole number part by the denominator and add the numerator:
[tex]$$3 \times 5 + 3 = 15 + 3 = 18.$$[/tex]
Thus, the length is
[tex]$$\frac{18}{5} \text{ metres}.$$[/tex]
2. The price per metre is
[tex]$$₹36 \frac{3}{4}.$$[/tex]
Similarly, multiply the whole number part by the denominator and add the numerator:
[tex]$$36 \times 4 + 3 = 144 + 3 = 147.$$[/tex]
So, the price per metre is
[tex]$$\frac{147}{4} \text{ rupees}.$$[/tex]
3. Now, to find the total cost, multiply the length and the price:
[tex]$$\text{Total Cost} = \frac{18}{5} \times \frac{147}{4} = \frac{18 \times 147}{5 \times 4} = \frac{2646}{20}.$$[/tex]
4. Finally, convert the fraction to a decimal:
[tex]$$\frac{2646}{20} = 132.3.$$[/tex]
Thus, the cost of [tex]$3 \frac{3}{5}$[/tex] metres of cloth at [tex]$₹ 36 \frac{3}{4}$[/tex] per metre is
[tex]$$₹132.3.$$[/tex]
1. The length of cloth is given as
[tex]$$3 \frac{3}{5}.$$[/tex]
Multiply the whole number part by the denominator and add the numerator:
[tex]$$3 \times 5 + 3 = 15 + 3 = 18.$$[/tex]
Thus, the length is
[tex]$$\frac{18}{5} \text{ metres}.$$[/tex]
2. The price per metre is
[tex]$$₹36 \frac{3}{4}.$$[/tex]
Similarly, multiply the whole number part by the denominator and add the numerator:
[tex]$$36 \times 4 + 3 = 144 + 3 = 147.$$[/tex]
So, the price per metre is
[tex]$$\frac{147}{4} \text{ rupees}.$$[/tex]
3. Now, to find the total cost, multiply the length and the price:
[tex]$$\text{Total Cost} = \frac{18}{5} \times \frac{147}{4} = \frac{18 \times 147}{5 \times 4} = \frac{2646}{20}.$$[/tex]
4. Finally, convert the fraction to a decimal:
[tex]$$\frac{2646}{20} = 132.3.$$[/tex]
Thus, the cost of [tex]$3 \frac{3}{5}$[/tex] metres of cloth at [tex]$₹ 36 \frac{3}{4}$[/tex] per metre is
[tex]$$₹132.3.$$[/tex]