College

Find the 44th percentile, [tex]P_{44}[/tex], from the following data:

[tex]
\[
\begin{array}{|r|r|r|r|r|}
\hline
10.3 & 11.3 & 11.6 & 12.1 & 14.1 \\
\hline
15.2 & 15.8 & 16.1 & 16.9 & 17 \\
\hline
17.8 & 18.1 & 19.6 & 20.6 & 21 \\
\hline
21.4 & 23.4 & 25.8 & 27 & 29.3 \\
\hline
31.9 & 32.2 & 36.9 & 37.5 & 37.9 \\
\hline
40.2 & 41.1 & 41.6 & 42 & 43.9 \\
\hline
45.5 & 48.2 & 49.9 & & \\
\hline
\end{array}
\]
[/tex]

[tex]P_{44} = \square[/tex]

Answer :

To find the 44th percentile, [tex]\( P_{44} \)[/tex], from the given data, you can follow these steps:

1. List the Data in Ascending Order: The data provided is already sorted in ascending order, which is:

10.3, 11.3, 11.6, 12.1, 14.1, 15.2, 15.8, 16.1, 16.9, 17, 17.8, 18.1, 19.6, 20.6, 21, 21.4, 23.4, 25.8, 27, 29.3, 31.9, 32.2, 36.9, 37.5, 37.9, 40.2, 41.1, 41.6, 42, 43.9, 45.5, 48.2, 49.9

2. Determine the Total Number of Observations: There are 33 data points.

3. Calculate the Position of the 44th Percentile:

To find the position in the data set, use the formula:

[tex]\[
\text{Position} = \frac{44}{100} \times (n + 1)
\][/tex]

Where [tex]\( n \)[/tex] is the number of data points.

[tex]\[
\text{Position} = 0.44 \times (33 + 1) = 0.44 \times 34 = 14.96
\][/tex]

4. Locate the 44th Percentile:

Since the position [tex]\( 14.96 \)[/tex] is not a whole number, we need to use interpolation:

- Find the values at the integer parts of the calculated position. These positions are 14 and 15 in the sorted data.
- The 14th data point is 20.6, and the 15th data point is 21.
- The fractional part of the position is 0.96.

5. Interpolate to Find [tex]\( P_{44} \)[/tex]:

Use the interpolation formula:

[tex]\[
P_{44} = \text{value at position 14} + (\text{fractional part}) \times (\text{value at position 15} - \text{value at position 14})
\][/tex]

[tex]\[
P_{44} = 20.6 + 0.96 \times (21 - 20.6)
\][/tex]

[tex]\[
P_{44} = 20.6 + 0.96 \times 0.4
\][/tex]

[tex]\[
P_{44} = 20.6 + 0.384
\][/tex]

[tex]\[
P_{44} = 20.984
\][/tex]

Thus, the 44th percentile [tex]\( P_{44} \)[/tex] of the data set is approximately 20.984.