College

Find [tex]f(5)[/tex] for [tex]f(x) = \frac{1}{9}(3)^x[/tex].

A. 9
B. 27
C. 3
D. 81

Answer :

To find [tex]\( f(5) \)[/tex] for the function [tex]\( f(x) = \frac{1}{9}(3)^x \)[/tex], follow these steps:

1. Understand the function: The function given is [tex]\( f(x) = \frac{1}{9}(3)^x \)[/tex]. This means for any input [tex]\( x \)[/tex], you first calculate [tex]\( 3^x \)[/tex], then multiply the result by [tex]\(\frac{1}{9}\)[/tex].

2. Substitute the given value: We need to find [tex]\( f(5) \)[/tex]. Substitute [tex]\( x = 5 \)[/tex] into the function:

[tex]\[
f(5) = \frac{1}{9}(3)^5
\][/tex]

3. Calculate [tex]\( 3^5 \)[/tex]:

[tex]\[
3^5 = 3 \times 3 \times 3 \times 3 \times 3 = 243
\][/tex]

4. Multiply by [tex]\(\frac{1}{9}\)[/tex]:

Now, take the result of [tex]\( 3^5 \)[/tex] and multiply it by [tex]\(\frac{1}{9}\)[/tex]:

[tex]\[
f(5) = \frac{1}{9} \times 243 = 27
\][/tex]

Therefore, the value of [tex]\( f(5) \)[/tex] is 27.

The correct answer is B. 27.