Answer :
To find [tex]\((f \cdot g)(x)\)[/tex], we need to multiply the functions [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]. The given functions are:
[tex]\[ f(x) = 7x^3 - 5x^2 + 42x - 30 \][/tex]
[tex]\[ g(x) = 7x - 5 \][/tex]
To perform the multiplication, we distribute each term in [tex]\(f(x)\)[/tex] with each term in [tex]\(g(x)\)[/tex]:
1. Multiply [tex]\(7x^3\)[/tex] by each term in [tex]\(g(x)\)[/tex]:
- [tex]\(7x^3 \cdot 7x = 49x^4\)[/tex]
- [tex]\(7x^3 \cdot (-5) = -35x^3\)[/tex]
2. Multiply [tex]\(-5x^2\)[/tex] by each term in [tex]\(g(x)\)[/tex]:
- [tex]\(-5x^2 \cdot 7x = -35x^3\)[/tex]
- [tex]\(-5x^2 \cdot (-5) = 25x^2\)[/tex]
3. Multiply [tex]\(42x\)[/tex] by each term in [tex]\(g(x)\)[/tex]:
- [tex]\(42x \cdot 7x = 294x^2\)[/tex]
- [tex]\(42x \cdot (-5) = -210x\)[/tex]
4. Multiply [tex]\(-30\)[/tex] by each term in [tex]\(g(x)\)[/tex]:
- [tex]\(-30 \cdot 7x = -210x\)[/tex]
- [tex]\(-30 \cdot (-5) = 150\)[/tex]
Now, combine all these terms together:
[tex]\[
(f \cdot g)(x) = 49x^4 - 35x^3 - 35x^3 + 25x^2 + 294x^2 - 210x - 210x + 150
\][/tex]
Next, combine like terms:
- The [tex]\(x^4\)[/tex] term: [tex]\(49x^4\)[/tex]
- The [tex]\(x^3\)[/tex] terms: [tex]\(-35x^3 - 35x^3 = -70x^3\)[/tex]
- The [tex]\(x^2\)[/tex] terms: [tex]\(25x^2 + 294x^2 = 319x^2\)[/tex]
- The [tex]\(x\)[/tex] terms: [tex]\(-210x - 210x = -420x\)[/tex]
- The constant term: [tex]\(150\)[/tex]
The resulting expression is:
[tex]\[
(f \cdot g)(x) = 49x^4 - 70x^3 + 319x^2 - 420x + 150
\][/tex]
Therefore, the answer is:
[tex]\((f \cdot g)(x) = 49x^4 - 70x^3 + 319x^2 - 420x + 150\)[/tex].
[tex]\[ f(x) = 7x^3 - 5x^2 + 42x - 30 \][/tex]
[tex]\[ g(x) = 7x - 5 \][/tex]
To perform the multiplication, we distribute each term in [tex]\(f(x)\)[/tex] with each term in [tex]\(g(x)\)[/tex]:
1. Multiply [tex]\(7x^3\)[/tex] by each term in [tex]\(g(x)\)[/tex]:
- [tex]\(7x^3 \cdot 7x = 49x^4\)[/tex]
- [tex]\(7x^3 \cdot (-5) = -35x^3\)[/tex]
2. Multiply [tex]\(-5x^2\)[/tex] by each term in [tex]\(g(x)\)[/tex]:
- [tex]\(-5x^2 \cdot 7x = -35x^3\)[/tex]
- [tex]\(-5x^2 \cdot (-5) = 25x^2\)[/tex]
3. Multiply [tex]\(42x\)[/tex] by each term in [tex]\(g(x)\)[/tex]:
- [tex]\(42x \cdot 7x = 294x^2\)[/tex]
- [tex]\(42x \cdot (-5) = -210x\)[/tex]
4. Multiply [tex]\(-30\)[/tex] by each term in [tex]\(g(x)\)[/tex]:
- [tex]\(-30 \cdot 7x = -210x\)[/tex]
- [tex]\(-30 \cdot (-5) = 150\)[/tex]
Now, combine all these terms together:
[tex]\[
(f \cdot g)(x) = 49x^4 - 35x^3 - 35x^3 + 25x^2 + 294x^2 - 210x - 210x + 150
\][/tex]
Next, combine like terms:
- The [tex]\(x^4\)[/tex] term: [tex]\(49x^4\)[/tex]
- The [tex]\(x^3\)[/tex] terms: [tex]\(-35x^3 - 35x^3 = -70x^3\)[/tex]
- The [tex]\(x^2\)[/tex] terms: [tex]\(25x^2 + 294x^2 = 319x^2\)[/tex]
- The [tex]\(x\)[/tex] terms: [tex]\(-210x - 210x = -420x\)[/tex]
- The constant term: [tex]\(150\)[/tex]
The resulting expression is:
[tex]\[
(f \cdot g)(x) = 49x^4 - 70x^3 + 319x^2 - 420x + 150
\][/tex]
Therefore, the answer is:
[tex]\((f \cdot g)(x) = 49x^4 - 70x^3 + 319x^2 - 420x + 150\)[/tex].