College

1. Find the product of [tex]2x^4(4x^2 + 3x + 1)[/tex].

A. [tex]8x^6 + 6x^5 + 2x^4[/tex]

B. [tex]8x^8 + 3x^4 + 2x^4[/tex]

C. [tex]2x^4 + 6x^5 + 8x^6[/tex]

D. [tex]6x^6 + 5x^5 + 3x^4[/tex]

Answer :

Sure! Let's find the product of [tex]\(2x^4(4x^2 + 3x + 1)\)[/tex] step-by-step:

1. Distribute [tex]\(2x^4\)[/tex]:

We need to multiply each term inside the parentheses by [tex]\(2x^4\)[/tex].

- First Term: Multiply [tex]\(2x^4\)[/tex] by [tex]\(4x^2\)[/tex].

[tex]\[
2x^4 \times 4x^2 = 8x^{4+2} = 8x^6
\][/tex]

- Second Term: Multiply [tex]\(2x^4\)[/tex] by [tex]\(3x\)[/tex].

[tex]\[
2x^4 \times 3x = 6x^{4+1} = 6x^5
\][/tex]

- Third Term: Multiply [tex]\(2x^4\)[/tex] by [tex]\(1\)[/tex].

[tex]\[
2x^4 \times 1 = 2x^4
\][/tex]

2. Combine the Results:

Now, we combine all the terms we calculated:

[tex]\[
8x^6 + 6x^5 + 2x^4
\][/tex]

So, the product of [tex]\(2x^4(4x^2 + 3x + 1)\)[/tex] is [tex]\(8x^6 + 6x^5 + 2x^4\)[/tex].

Thus, among the given choices, the correct answer is:

[tex]\(8x^6 + 6x^5 + 2x^4\)[/tex]