Answer :
To solve the equation [tex]\(\frac{11}{15} + \frac{2}{\square} = \frac{13}{15}\)[/tex], we need to find the missing number that, when put into the denominator of the second fraction, makes the equation true.
1. Start with the equation:
[tex]\[
\frac{11}{15} + \frac{2}{x} = \frac{13}{15}
\][/tex]
2. Subtract [tex]\(\frac{11}{15}\)[/tex] from both sides to isolate [tex]\(\frac{2}{x}\)[/tex]:
[tex]\[
\frac{2}{x} = \frac{13}{15} - \frac{11}{15}
\][/tex]
3. Calculate the right side of the equation:
[tex]\[
\frac{13}{15} - \frac{11}{15} = \frac{2}{15}
\][/tex]
4. Now, we have:
[tex]\[
\frac{2}{x} = \frac{2}{15}
\][/tex]
5. To solve for [tex]\(x\)[/tex], notice that the fractions have the same numerator. Therefore, their denominators must be equal to make the fractions equal. So:
[tex]\[
x = 15
\][/tex]
Thus, the missing number is 15.
1. Start with the equation:
[tex]\[
\frac{11}{15} + \frac{2}{x} = \frac{13}{15}
\][/tex]
2. Subtract [tex]\(\frac{11}{15}\)[/tex] from both sides to isolate [tex]\(\frac{2}{x}\)[/tex]:
[tex]\[
\frac{2}{x} = \frac{13}{15} - \frac{11}{15}
\][/tex]
3. Calculate the right side of the equation:
[tex]\[
\frac{13}{15} - \frac{11}{15} = \frac{2}{15}
\][/tex]
4. Now, we have:
[tex]\[
\frac{2}{x} = \frac{2}{15}
\][/tex]
5. To solve for [tex]\(x\)[/tex], notice that the fractions have the same numerator. Therefore, their denominators must be equal to make the fractions equal. So:
[tex]\[
x = 15
\][/tex]
Thus, the missing number is 15.