High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Factor the polynomial:

[tex]2x^3 - 3x^2 - 32x + 48[/tex]

Answer :

We wish to factor the polynomial
[tex]$$
2x^3 - 3x^2 - 32x + 48.
$$[/tex]

Step 1. Check for a common factor:
We start by testing a simple candidate. Substituting [tex]$x = 4$[/tex] into the polynomial, we have
[tex]$$
2(4)^3 - 3(4)^2 - 32(4) + 48 = 128 - 48 - 128 + 48 = 0.
$$[/tex]
Since the polynomial equals zero when [tex]$x=4$[/tex], it follows that [tex]$x-4$[/tex] is a factor.

Step 2. Divide the polynomial by [tex]$x-4$[/tex]:
Divide
[tex]$$
2x^3 - 3x^2 - 32x + 48
$$[/tex]
by [tex]$x-4$[/tex]. The result of this division is a quadratic polynomial:
[tex]$$
2x^2 + 5x - 12.
$$[/tex]

Step 3. Factor the quadratic polynomial:
Now we factor
[tex]$$
2x^2 + 5x - 12.
$$[/tex]
We look for two numbers whose product is [tex]$2 \cdot (-12) = -24$[/tex] and whose sum is [tex]$5$[/tex]. The numbers [tex]$8$[/tex] and [tex]$-3$[/tex] fit the criteria because [tex]$8 \times (-3) = -24$[/tex] and [tex]$8 + (-3) = 5$[/tex]. Using these, we rewrite the middle term:
[tex]$$
2x^2 + 8x - 3x - 12.
$$[/tex]
Grouping the terms, we have
[tex]$$
(2x^2 + 8x) + (-3x - 12).
$$[/tex]
Factor out the common factors from each group:
[tex]$$
2x(x + 4) - 3(x + 4).
$$[/tex]
Noticing the common factor [tex]$(x + 4)$[/tex], we factor it out:
[tex]$$
(x+4)(2x-3).
$$[/tex]

Step 4. Write the complete factorization:
Substitute back the factor [tex]$x-4$[/tex] from Step 1. Thus, the fully factored form of the original polynomial is:
[tex]$$
2x^3 - 3x^2 - 32x + 48 = (x-4)(x+4)(2x-3).
$$[/tex]

This is the final factorization.