College

What is the product of the polynomials below?

[tex]\left(5x^2 - x - 3\right)(2x + 6)[/tex]

A. [tex]10x^3 + 28x^2 + 12x + 18[/tex]

B. [tex]10x^3 + 28x^2 + 12x + 3[/tex]

C. [tex]10x^3 + 28x^2 - 12x - 18[/tex]

D. [tex]10x^3 + 28x^2 - 12x - 3[/tex]

Answer :

Let's find the product of the polynomials [tex]\((5x^2 - x - 3)\)[/tex] and [tex]\((2x + 6)\)[/tex] step by step.

1. Distribute Each Term:
- First, distribute [tex]\(5x^2\)[/tex] from [tex]\((5x^2 - x - 3)\)[/tex] to each term in [tex]\((2x + 6)\)[/tex]:
[tex]\[
5x^2 \cdot 2x = 10x^3
\][/tex]
[tex]\[
5x^2 \cdot 6 = 30x^2
\][/tex]

- Next, distribute [tex]\(-x\)[/tex] to each term in [tex]\((2x + 6)\)[/tex]:
[tex]\[
-x \cdot 2x = -2x^2
\][/tex]
[tex]\[
-x \cdot 6 = -6x
\][/tex]

- Finally, distribute [tex]\(-3\)[/tex] to each term in [tex]\((2x + 6)\)[/tex]:
[tex]\[
-3 \cdot 2x = -6x
\][/tex]
[tex]\[
-3 \cdot 6 = -18
\][/tex]


2. Combine Like Terms:
- Combine all of the resulting terms to form the expanded polynomial:
[tex]\[
10x^3 + (30x^2 - 2x^2) + (-6x - 6x) - 18
\][/tex]

- Simplify by combining like terms:
[tex]\[
10x^3 + 28x^2 - 12x - 18
\][/tex]

The product of the polynomials is:
[tex]\[
10x^3 + 28x^2 - 12x - 18
\][/tex]

So, the correct answer is option C:
[tex]\[
10x^3 + 28x^2 - 12x - 18
\][/tex]