College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Factor the four-term polynomial by grouping:

[tex]15x^3 - 25x^2 + 6x - 10[/tex]

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

A. [tex]15x^3 - 25x^2 + 6x - 10 = \square[/tex]

B. The polynomial is not factorable by grouping.

Answer :

To factor the polynomial [tex]\(15x^3 - 25x^2 + 6x - 10\)[/tex] by grouping, follow these steps:

1. Group the terms: Divide the polynomial into two groups:
- First group: [tex]\(15x^3 - 25x^2\)[/tex]
- Second group: [tex]\(6x - 10\)[/tex]

2. Factor the first group: [tex]\(15x^3 - 25x^2\)[/tex]
- Find the greatest common factor (GCF) of [tex]\(15x^3\)[/tex] and [tex]\(25x^2\)[/tex], which is [tex]\(5x^2\)[/tex].
- Factor out [tex]\(5x^2\)[/tex]: [tex]\(5x^2(3x - 5)\)[/tex]

3. Factor the second group: [tex]\(6x - 10\)[/tex]
- Find the greatest common factor (GCF) of [tex]\(6x\)[/tex] and [tex]\(10\)[/tex], which is [tex]\(2\)[/tex].
- Factor out [tex]\(2\)[/tex]: [tex]\(2(3x - 5)\)[/tex]

4. Reform the original expression: Now the expression looks like this:
[tex]\[
5x^2(3x - 5) + 2(3x - 5)
\][/tex]

5. Factor by grouping: Notice that the expression [tex]\(3x - 5\)[/tex] is common in both terms. Factor out the common factor [tex]\(3x - 5\)[/tex]:
[tex]\[
(5x^2 + 2)(3x - 5)
\][/tex]

Therefore, the polynomial [tex]\(15x^3 - 25x^2 + 6x - 10\)[/tex] can be factored by grouping as [tex]\((5x^2 + 2)(3x - 5)\)[/tex]. So the correct choice is:

A. [tex]\(15 x^3 - 25 x^2 + 6 x - 10 = (5x^2 + 2)(3x - 5)\)[/tex]