Answer :
Sure! Let's factor the polynomial [tex]\( x^3 - 6x^2 + 8x - 48 \)[/tex] by grouping.
1. Group the terms: We'll group the terms into two pairs: [tex]\( (x^3 - 6x^2) \)[/tex] and [tex]\( (8x - 48) \)[/tex].
2. Factor out the greatest common factor from each group:
- In the first group [tex]\( (x^3 - 6x^2) \)[/tex], the greatest common factor is [tex]\( x^2 \)[/tex]. Factoring it out gives us:
[tex]\[ x^2(x - 6) \][/tex]
- In the second group [tex]\( (8x - 48) \)[/tex], the greatest common factor is [tex]\( 8 \)[/tex]. Factoring it out gives us:
[tex]\[ 8(x - 6) \][/tex]
3. Combine the groups: Now our expression looks like this:
[tex]\[ x^2(x - 6) + 8(x - 6) \][/tex]
4. Factor out the common binomial factor: Notice that [tex]\( (x - 6) \)[/tex] is a common factor in both terms. Factor [tex]\( (x - 6) \)[/tex] out:
[tex]\[ (x^2 + 8)(x - 6) \][/tex]
So, the factored form of the polynomial [tex]\( x^3 - 6x^2 + 8x - 48 \)[/tex] is [tex]\( (x^2 + 8)(x - 6) \)[/tex].
Therefore, the correct choice is:
- A. [tex]\( x^3 - 6x^2 + 8x - 48 = (x^2 + 8)(x - 6) \)[/tex]
1. Group the terms: We'll group the terms into two pairs: [tex]\( (x^3 - 6x^2) \)[/tex] and [tex]\( (8x - 48) \)[/tex].
2. Factor out the greatest common factor from each group:
- In the first group [tex]\( (x^3 - 6x^2) \)[/tex], the greatest common factor is [tex]\( x^2 \)[/tex]. Factoring it out gives us:
[tex]\[ x^2(x - 6) \][/tex]
- In the second group [tex]\( (8x - 48) \)[/tex], the greatest common factor is [tex]\( 8 \)[/tex]. Factoring it out gives us:
[tex]\[ 8(x - 6) \][/tex]
3. Combine the groups: Now our expression looks like this:
[tex]\[ x^2(x - 6) + 8(x - 6) \][/tex]
4. Factor out the common binomial factor: Notice that [tex]\( (x - 6) \)[/tex] is a common factor in both terms. Factor [tex]\( (x - 6) \)[/tex] out:
[tex]\[ (x^2 + 8)(x - 6) \][/tex]
So, the factored form of the polynomial [tex]\( x^3 - 6x^2 + 8x - 48 \)[/tex] is [tex]\( (x^2 + 8)(x - 6) \)[/tex].
Therefore, the correct choice is:
- A. [tex]\( x^3 - 6x^2 + 8x - 48 = (x^2 + 8)(x - 6) \)[/tex]