High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Use vertical multiplication to find the product of:

[tex]
\[
\begin{array}{r}
x^3 + 2x + 3 \\
\times \quad x^3 - x + 1
\end{array}
\]
[/tex]

A. [tex]x^6 - x^4 + x^3 - 2x^2 + 2x + 3[/tex]

B. [tex]x^6 + 2x^3 - 2x^2 + 2x + 1[/tex]

C. [tex]x^6 + x^4 + 4x^3 - 2x^2 - x + 3[/tex]

D. [tex]x^6 + x^4 + 3x^3 - 2x^2 - 3x + 3[/tex]

Answer :

Let's find the product of the polynomials [tex]\(x^3 + 2x + 3\)[/tex] and [tex]\(x^3 - x + 1\)[/tex] using vertical multiplication. We'll multiply each term in the first polynomial by each term in the second polynomial and then combine like terms.

### Step-by-Step Solution:

1. Arrange the Polynomials Vertically:

[tex]\[
\begin{array}{r}
x^3 + 2x + 3 \\
\times \quad(x^3 - x + 1)
\end{array}
\][/tex]

2. Multiply Each Term:

- Multiply [tex]\(x^3\)[/tex] from the first polynomial by each term in the second polynomial:

[tex]\[
x^3 \cdot x^3 = x^6
\][/tex]
[tex]\[
x^3 \cdot (-x) = -x^4
\][/tex]
[tex]\[
x^3 \cdot 1 = x^3
\][/tex]

- Multiply [tex]\(2x\)[/tex] from the first polynomial by each term in the second polynomial:

[tex]\[
2x \cdot x^3 = 2x^4
\][/tex]
[tex]\[
2x \cdot (-x) = -2x^2
\][/tex]
[tex]\[
2x \cdot 1 = 2x
\][/tex]

- Multiply [tex]\(3\)[/tex] from the first polynomial by each term in the second polynomial:

[tex]\[
3 \cdot x^3 = 3x^3
\][/tex]
[tex]\[
3 \cdot (-x) = -3x
\][/tex]
[tex]\[
3 \cdot 1 = 3
\][/tex]

3. Write Down All Results and Align Like Terms:

- Combine the results from each multiplication:

[tex]\[
x^6 + (-x^4) + x^3
\][/tex]

[tex]\[
+ 2x^4 - 2x^2 + 2x
\][/tex]

[tex]\[
+ 3x^3 - 3x + 3
\][/tex]

4. Combine Like Terms:

- Start with the highest degree [tex]\(x^6\)[/tex]:
[tex]\[
x^6 + 0x^5
\][/tex]

- Combine [tex]\(x^4\)[/tex] terms: [tex]\((-x^4 + 2x^4) = x^4\)[/tex]

- Combine [tex]\(x^3\)[/tex] terms: [tex]\((x^3 + 3x^3) = 4x^3\)[/tex]

- Combine [tex]\(x^2\)[/tex] terms: [tex]\(-2x^2\)[/tex]

- Combine [tex]\(x\)[/tex] terms: [tex]\(2x - 3x = -x\)[/tex]

- Constant term: [tex]\(3\)[/tex]

5. Final Product:

[tex]\[
x^6 + x^4 + 4x^3 - 2x^2 - x + 3
\][/tex]

Therefore, the product of [tex]\((x^3 + 2x + 3)\)[/tex] and [tex]\((x^3 - x + 1)\)[/tex] is [tex]\(x^6 + x^4 + 4x^3 - 2x^2 - x + 3\)[/tex]. So, the correct answer is option C.