Answer :
Sure! Let's evaluate the function [tex]\( f(x) = x^2 + 9x + 1 \)[/tex] for each of the given values and simplify.
### a. [tex]\( f(8) \)[/tex]
To evaluate [tex]\( f(8) \)[/tex], substitute [tex]\( x = 8 \)[/tex] into the function:
[tex]\[
f(8) = 8^2 + 9 \cdot 8 + 1
\][/tex]
[tex]\[
= 64 + 72 + 1
\][/tex]
[tex]\[
= 137
\][/tex]
So, [tex]\( f(8) = 137 \)[/tex].
### b. [tex]\( f(x+5) \)[/tex]
To evaluate [tex]\( f(x+5) \)[/tex], substitute [tex]\( x+5 \)[/tex] into the function:
[tex]\[
f(x+5) = (x+5)^2 + 9(x+5) + 1
\][/tex]
First, expand [tex]\( (x+5)^2 \)[/tex]:
[tex]\[
(x+5)^2 = x^2 + 10x + 25
\][/tex]
Now substitute back:
[tex]\[
f(x+5) = x^2 + 10x + 25 + 9(x+5) + 1
\][/tex]
Expand [tex]\( 9(x+5) \)[/tex]:
[tex]\[
9(x+5) = 9x + 45
\][/tex]
Combine the terms:
[tex]\[
f(x+5) = x^2 + 10x + 25 + 9x + 45 + 1
\][/tex]
Combine like terms:
[tex]\[
= x^2 + (10x + 9x) + (25 + 45 + 1)
\][/tex]
[tex]\[
= x^2 + 19x + 71
\][/tex]
So, [tex]\( f(x+5) = x^2 + 19x + 71 \)[/tex].
### c. [tex]\( f(-x) \)[/tex]
To evaluate [tex]\( f(-x) \)[/tex], substitute [tex]\(-x\)[/tex] into the function:
[tex]\[
f(-x) = (-x)^2 + 9(-x) + 1
\][/tex]
Calculate [tex]\((-x)^2\)[/tex]:
[tex]\[
(-x)^2 = x^2
\][/tex]
Now substitute back:
[tex]\[
f(-x) = x^2 - 9x + 1
\][/tex]
So, [tex]\( f(-x) = x^2 - 9x + 1 \)[/tex].
These are the simplified results for each part of the question:
- [tex]\( f(8) = 137 \)[/tex]
- [tex]\( f(x+5) = x^2 + 19x + 71 \)[/tex]
- [tex]\( f(-x) = x^2 - 9x + 1 \)[/tex]
### a. [tex]\( f(8) \)[/tex]
To evaluate [tex]\( f(8) \)[/tex], substitute [tex]\( x = 8 \)[/tex] into the function:
[tex]\[
f(8) = 8^2 + 9 \cdot 8 + 1
\][/tex]
[tex]\[
= 64 + 72 + 1
\][/tex]
[tex]\[
= 137
\][/tex]
So, [tex]\( f(8) = 137 \)[/tex].
### b. [tex]\( f(x+5) \)[/tex]
To evaluate [tex]\( f(x+5) \)[/tex], substitute [tex]\( x+5 \)[/tex] into the function:
[tex]\[
f(x+5) = (x+5)^2 + 9(x+5) + 1
\][/tex]
First, expand [tex]\( (x+5)^2 \)[/tex]:
[tex]\[
(x+5)^2 = x^2 + 10x + 25
\][/tex]
Now substitute back:
[tex]\[
f(x+5) = x^2 + 10x + 25 + 9(x+5) + 1
\][/tex]
Expand [tex]\( 9(x+5) \)[/tex]:
[tex]\[
9(x+5) = 9x + 45
\][/tex]
Combine the terms:
[tex]\[
f(x+5) = x^2 + 10x + 25 + 9x + 45 + 1
\][/tex]
Combine like terms:
[tex]\[
= x^2 + (10x + 9x) + (25 + 45 + 1)
\][/tex]
[tex]\[
= x^2 + 19x + 71
\][/tex]
So, [tex]\( f(x+5) = x^2 + 19x + 71 \)[/tex].
### c. [tex]\( f(-x) \)[/tex]
To evaluate [tex]\( f(-x) \)[/tex], substitute [tex]\(-x\)[/tex] into the function:
[tex]\[
f(-x) = (-x)^2 + 9(-x) + 1
\][/tex]
Calculate [tex]\((-x)^2\)[/tex]:
[tex]\[
(-x)^2 = x^2
\][/tex]
Now substitute back:
[tex]\[
f(-x) = x^2 - 9x + 1
\][/tex]
So, [tex]\( f(-x) = x^2 - 9x + 1 \)[/tex].
These are the simplified results for each part of the question:
- [tex]\( f(8) = 137 \)[/tex]
- [tex]\( f(x+5) = x^2 + 19x + 71 \)[/tex]
- [tex]\( f(-x) = x^2 - 9x + 1 \)[/tex]