High School

Objects with masses of 193 kg and 348 kg are separated by 0.328 m. A 61.2 kg mass is placed midway between them.

1. Find the magnitude of the net gravitational force exerted by the two larger masses on the 61.2 kg mass. The value of the universal gravitational constant is [tex]$6.672 \times 10^{-11} \, N \cdot m^2 / kg^2$[/tex].

Answer in units of N.

Answer :

To find the magnitude of the net gravitational force exerted on the 61.2 kg mass by the two larger masses (193 kg and 348 kg), we can follow these steps:

1. Identify the Given Values:
- Mass of object 1 ([tex]\(m_1\)[/tex]) = 193 kg
- Mass of object 2 ([tex]\(m_2\)[/tex]) = 348 kg
- Mass of object 3 ([tex]\(m_3\)[/tex]) = 61.2 kg
- Distance between [tex]\(m_1\)[/tex] and [tex]\(m_2\)[/tex] = 0.328 m
- Universal gravitational constant ([tex]\(G\)[/tex]) = [tex]\(6.672 \times 10^{-11} \, \text{N} \cdot \text{m}^2/\text{kg}^2\)[/tex]

2. Determine the Position of [tex]\(m_3\)[/tex]:
- Since [tex]\(m_3\)[/tex] is placed midway between [tex]\(m_1\)[/tex] and [tex]\(m_2\)[/tex], the distance from [tex]\(m_3\)[/tex] to both [tex]\(m_1\)[/tex] and [tex]\(m_2\)[/tex] is half of the distance between [tex]\(m_1\)[/tex] and [tex]\(m_2\)[/tex].
- Distance from [tex]\(m_3\)[/tex] to [tex]\(m_1\)[/tex] and [tex]\(m_2\)[/tex] = 0.328 m / 2 = 0.164 m

3. Calculate the Gravitational Force Exerted by [tex]\(m_1\)[/tex] on [tex]\(m_3\)[/tex]:
[tex]\[
F_{m1\_m3} = \frac{G \cdot m_1 \cdot m_3}{(0.164)^2}
\][/tex]
[tex]\[
F_{m1\_m3} \approx 2.9300637715645445 \times 10^{-5} \, \text{N}
\][/tex]

4. Calculate the Gravitational Force Exerted by [tex]\(m_2\)[/tex] on [tex]\(m_3\)[/tex]:
[tex]\[
F_{m2\_m3} = \frac{G \cdot m_2 \cdot m_3}{(0.164)^2}
\][/tex]
[tex]\[
F_{m2\_m3} \approx 5.283223795359903 \times 10^{-5} \, \text{N}
\][/tex]

5. Determine the Net Gravitational Force:
- Since both forces act in opposite directions, the net gravitational force is the difference in magnitudes of these forces.
[tex]\[
F_{\text{net}} = |F_{m1\_m3} - F_{m2\_m3}|
\][/tex]
[tex]\[
F_{\text{net}} \approx 2.3531600237953585 \times 10^{-5} \, \text{N}
\][/tex]

Thus, the magnitude of the net gravitational force exerted by the two larger masses on the 61.2 kg mass is approximately [tex]\(2.3531 \times 10^{-5} \, \text{N}\)[/tex].