Answer :
To evaluate the expression [tex]\(4s + t\)[/tex] where [tex]\(s = 6\)[/tex] and [tex]\(t = 5\)[/tex], follow these steps:
1. Substitute the given values for [tex]\(s\)[/tex] and [tex]\(t\)[/tex] into the expression. This gives us:
[tex]\[
4(6) + 5
\][/tex]
2. Multiply 4 by the value of [tex]\(s\)[/tex], which is 6:
[tex]\[
4 \times 6 = 24
\][/tex]
3. Add the result to the value of [tex]\(t\)[/tex], which is 5:
[tex]\[
24 + 5 = 29
\][/tex]
Therefore, the value of the expression [tex]\(4s + t\)[/tex] when [tex]\(s = 6\)[/tex] and [tex]\(t = 5\)[/tex] is [tex]\(29\)[/tex].
1. Substitute the given values for [tex]\(s\)[/tex] and [tex]\(t\)[/tex] into the expression. This gives us:
[tex]\[
4(6) + 5
\][/tex]
2. Multiply 4 by the value of [tex]\(s\)[/tex], which is 6:
[tex]\[
4 \times 6 = 24
\][/tex]
3. Add the result to the value of [tex]\(t\)[/tex], which is 5:
[tex]\[
24 + 5 = 29
\][/tex]
Therefore, the value of the expression [tex]\(4s + t\)[/tex] when [tex]\(s = 6\)[/tex] and [tex]\(t = 5\)[/tex] is [tex]\(29\)[/tex].