College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Solve the equation using the quadratic formula:

[tex]15x^2 + 13x = 0[/tex]

a. [tex]x = -\frac{13}{15}, 0[/tex]
b. [tex]x = 0[/tex]
c. [tex]x = \frac{13}{15}, 0[/tex]
d. [tex]x = \pm \frac{13}{15}[/tex]

Please select the best answer from the choices provided:
A
B
C
D

Answer :

To solve the quadratic equation [tex]\(15x^2 + 13x = 0\)[/tex], we can use the quadratic formula. The general form of a quadratic equation is [tex]\(ax^2 + bx + c = 0\)[/tex]. For this equation:

- [tex]\(a = 15\)[/tex]
- [tex]\(b = 13\)[/tex]
- [tex]\(c = 0\)[/tex]

The quadratic formula is given by:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

However, since [tex]\(c = 0\)[/tex], the equation [tex]\(15x^2 + 13x = 0\)[/tex] can be factored easily. We can factor out an [tex]\(x\)[/tex]:

[tex]\[ x(15x + 13) = 0 \][/tex]

This gives us two solutions:

1. [tex]\( x = 0 \)[/tex]

2. [tex]\( 15x + 13 = 0 \)[/tex]

To solve [tex]\(15x + 13 = 0\)[/tex], subtract 13 from both sides:

[tex]\[ 15x = -13 \][/tex]

Divide both sides by 15:

[tex]\[ x = -\frac{13}{15} \][/tex]

So, the solutions are [tex]\(x = 0\)[/tex] and [tex]\(x = -\frac{13}{15}\)[/tex].

Among the options provided:

- a. [tex]\(x = -\frac{13}{15}, 0\)[/tex]
- b. [tex]\(x = 0\)[/tex]
- c. [tex]\(x = \frac{13}{15}, 0\)[/tex]
- d. [tex]\(x = \pm \frac{13}{15}\)[/tex]

The correct choice for the solutions is option A: [tex]\(x = -\frac{13}{15}, 0\)[/tex].