Answer :
To find the force needed to give a 0.25 kg arrow an acceleration of [tex]\(196 \, \text{m/s}^2\)[/tex], we can use Newton's second law of motion. Newton's second law states that force is the product of mass and acceleration.
Here's how you can solve the problem step-by-step:
1. Identify the given values:
- Mass of the arrow: [tex]\(0.25 \, \text{kg}\)[/tex]
- Acceleration: [tex]\(196 \, \text{m/s}^2\)[/tex]
2. Apply Newton's second law of motion:
- The formula for force ([tex]\(F\)[/tex]) is:
[tex]\[
F = \text{mass} \times \text{acceleration}
\][/tex]
3. Substitute the given values into the formula:
- [tex]\(F = 0.25 \, \text{kg} \times 196 \, \text{m/s}^2\)[/tex]
4. Calculate the force:
- [tex]\(F = 49 \, \text{N}\)[/tex]
Therefore, the force needed to give a 0.25 kg arrow an acceleration of [tex]\(196 \, \text{m/s}^2\)[/tex] is [tex]\(49 \, \text{N}\)[/tex].
Here's how you can solve the problem step-by-step:
1. Identify the given values:
- Mass of the arrow: [tex]\(0.25 \, \text{kg}\)[/tex]
- Acceleration: [tex]\(196 \, \text{m/s}^2\)[/tex]
2. Apply Newton's second law of motion:
- The formula for force ([tex]\(F\)[/tex]) is:
[tex]\[
F = \text{mass} \times \text{acceleration}
\][/tex]
3. Substitute the given values into the formula:
- [tex]\(F = 0.25 \, \text{kg} \times 196 \, \text{m/s}^2\)[/tex]
4. Calculate the force:
- [tex]\(F = 49 \, \text{N}\)[/tex]
Therefore, the force needed to give a 0.25 kg arrow an acceleration of [tex]\(196 \, \text{m/s}^2\)[/tex] is [tex]\(49 \, \text{N}\)[/tex].