College

Evaluate: [tex]\frac{9}{15} \div \frac{27}{30}[/tex]

A. [tex]\frac{2}{3}[/tex]
B. [tex]\frac{27}{50}[/tex]
C. [tex]\frac{50}{27}[/tex]
D. [tex]\frac{3}{2}[/tex]

Answer :

To solve the division of two fractions, follow these steps:

1. Identify the fractions: The fractions given in the problem are [tex]\(\frac{9}{15}\)[/tex] and [tex]\(\frac{27}{30}\)[/tex].

2. Reciprocal of the second fraction: When dividing fractions, take the reciprocal (flip) of the second fraction and multiply:
[tex]\[
\text{Reciprocal of } \frac{27}{30} \text{ is } \frac{30}{27}.
\][/tex]

3. Multiply the fractions: Multiply the first fraction by the reciprocal of the second fraction:
[tex]\[
\frac{9}{15} \times \frac{30}{27}.
\][/tex]

4. Multiply the numerators and denominators:
[tex]\[
\text{Numerator: } 9 \times 30 = 270,
\][/tex]
[tex]\[
\text{Denominator: } 15 \times 27 = 405.
\][/tex]
So, we get [tex]\(\frac{270}{405}\)[/tex].

5. Simplify the fraction: To simplify [tex]\(\frac{270}{405}\)[/tex], find the greatest common divisor (GCD) of 270 and 405, which is 135.

Divide both the numerator and denominator by 135:
[tex]\[
\frac{270 \div 135}{405 \div 135} = \frac{2}{3}.
\][/tex]

Thus, the answer to the problem [tex]\(\frac{9}{15} \div \frac{27}{30}\)[/tex] is [tex]\(\frac{2}{3}\)[/tex], which corresponds to option A.