High School

Simplify:

[tex]\left(3x^2 y\right) \cdot \left(2x y^3\right) \cdot \left(4x^2 y^2\right)[/tex]

A. [tex]9x^4 y^5[/tex]
B. [tex]9x^5 y^6[/tex]
C. [tex]24x^4 y^5[/tex]
D. [tex]24x^5 y^6[/tex]

Answer :

We start with the expression

$$
(3x^2y) \cdot (2xy^3) \cdot (4x^2y^2).
$$

**Step 1: Multiply the coefficients**
Multiply the numerical coefficients together:

$$
3 \times 2 \times 4 = 24.
$$

**Step 2: Multiply the \( x \) terms**
When multiplying like bases, add the exponents. For the \( x \) terms, the exponents are 2, 1, and 2:

$$
x^2 \cdot x^1 \cdot x^2 = x^{2+1+2} = x^5.
$$

**Step 3: Multiply the \( y \) terms**
Similarly, for the \( y \) terms, the exponents are 1, 3, and 2:

$$
y^1 \cdot y^3 \cdot y^2 = y^{1+3+2} = y^6.
$$

**Step 4: Combine all parts**
Put together the results from Steps 1–3:

$$
(3x^2y) \cdot (2xy^3) \cdot (4x^2y^2) = 24x^5y^6.
$$

Thus, the simplified form of the given expression is

$$
\boxed{24x^5y^6}.
$$

This corresponds to option D.