College

Evaluate each algebraic expression for [tex]c = 0.6[/tex] and [tex]d = 300[/tex]. Remember to work from left to right.

7. [tex]d \div c \times 400[/tex]

8. [tex]d \div 50 \times 7[/tex]

9. [tex]24 \div c \times d[/tex]

10. [tex]15 \times c \times 25[/tex]

11. [tex]d \div 15 \times 1000[/tex]

12. [tex]d \times 720 \div c[/tex]

13. [tex]d \times 20 \times c[/tex]

14. [tex]19 \times d \div c[/tex]

15. [tex]150c \div d[/tex]

16. [tex]\frac{c + d}{75}[/tex]

17. [tex]c \cdot 500 - d[/tex]

18. [tex](d - c) \times 400[/tex]

Answer :

Sure! Let's evaluate each algebraic expression step by step for [tex]\( c = 0.6 \)[/tex] and [tex]\( d = 300 \)[/tex].

1. Expression 7: [tex]\( d \div c \times 400 \)[/tex]
- First, divide [tex]\( d \)[/tex] by [tex]\( c \)[/tex]: [tex]\( 300 \div 0.6 = 500 \)[/tex].
- Then, multiply the result by 400: [tex]\( 500 \times 400 = 200,000 \)[/tex].

2. Expression 8: [tex]\( d \div 50 \times 7 \)[/tex]
- First, divide [tex]\( d \)[/tex] by 50: [tex]\( 300 \div 50 = 6 \)[/tex].
- Then, multiply the result by 7: [tex]\( 6 \times 7 = 42 \)[/tex].

3. Expression 9: [tex]\( 24 \div c \times d \)[/tex]
- First, divide 24 by [tex]\( c \)[/tex]: [tex]\( 24 \div 0.6 = 40 \)[/tex].
- Then, multiply the result by [tex]\( d \)[/tex]: [tex]\( 40 \times 300 = 12,000 \)[/tex].

4. Expression 10: [tex]\( 15 \times c \times 25 \)[/tex]
- First, multiply 15 by [tex]\( c \)[/tex]: [tex]\( 15 \times 0.6 = 9 \)[/tex].
- Then, multiply the result by 25: [tex]\( 9 \times 25 = 225 \)[/tex].

5. Expression 11: [tex]\( d \div 15 \times 1000 \)[/tex]
- First, divide [tex]\( d \)[/tex] by 15: [tex]\( 300 \div 15 = 20 \)[/tex].
- Then, multiply the result by 1000: [tex]\( 20 \times 1000 = 20,000 \)[/tex].

6. Expression 12: [tex]\( d \times 720 \div c \)[/tex]
- First, multiply [tex]\( d \)[/tex] by 720: [tex]\( 300 \times 720 = 216,000 \)[/tex].
- Then, divide the result by [tex]\( c \)[/tex]: [tex]\( 216,000 \div 0.6 = 360,000 \)[/tex].

7. Expression 13: [tex]\( d \times 20 \times c \)[/tex]
- First, multiply [tex]\( d \)[/tex] by 20: [tex]\( 300 \times 20 = 6,000 \)[/tex].
- Then, multiply the result by [tex]\( c \)[/tex]: [tex]\( 6,000 \times 0.6 = 3,600 \)[/tex].

8. Expression 14: [tex]\( 19 \times d \div c \)[/tex]
- First, multiply 19 by [tex]\( d \)[/tex]: [tex]\( 19 \times 300 = 5,700 \)[/tex].
- Then, divide the result by [tex]\( c \)[/tex]: [tex]\( 5,700 \div 0.6 = 9,500 \)[/tex].

9. Expression 15: [tex]\( 150 \times c \div d \)[/tex]
- First, multiply 150 by [tex]\( c \)[/tex]: [tex]\( 150 \times 0.6 = 90 \)[/tex].
- Then, divide the result by [tex]\( d \)[/tex]: [tex]\( 90 \div 300 = 0.3 \)[/tex].

10. Expression 16: [tex]\( \frac{c + d}{75} \)[/tex]
- First, add [tex]\( c \)[/tex] and [tex]\( d \)[/tex]: [tex]\( 0.6 + 300 = 300.6 \)[/tex].
- Then, divide the result by 75: [tex]\( 300.6 \div 75 \approx 4.008 \)[/tex].

11. Expression 17: [tex]\( c \cdot 500 - d \)[/tex]
- First, multiply [tex]\( c \)[/tex] by 500: [tex]\( 0.6 \times 500 = 300 \)[/tex].
- Then, subtract [tex]\( d \)[/tex] from the result: [tex]\( 300 - 300 = 0 \)[/tex].

12. Expression 18: [tex]\( (d - c) \times 400 \)[/tex]
- First, subtract [tex]\( c \)[/tex] from [tex]\( d \)[/tex]: [tex]\( 300 - 0.6 = 299.4 \)[/tex].
- Then, multiply the result by 400: [tex]\( 299.4 \times 400 = 119,760 \)[/tex].

These are the evaluated values for each expression with [tex]\( c = 0.6 \)[/tex] and [tex]\( d = 300 \)[/tex].