High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Determine [tex]\angle R_p R_q[/tex], where [tex]R_p[/tex] and [tex]R_q[/tex] are rays with tails at [tex](0,0)[/tex] that respectively pass through [tex]p[/tex] and [tex]q[/tex].

Given:
- [tex]p=\left(\frac{3}{13}, \frac{\sqrt{160}}{13}\right)[/tex]
- [tex]q=\left(\frac{18}{20}, \frac{\sqrt{76}}{20}\right)[/tex].

Answer :

To determine the angle between the rays [tex]\( R_p \)[/tex] and [tex]\( R_q \)[/tex], we can follow these steps:

1. Identify the Direction Vectors:
We have two points:
- Point [tex]\( p = \left( \frac{3}{13}, \frac{\sqrt{160}}{13} \right) \)[/tex]
- Point [tex]\( q = \left( \frac{18}{20}, \frac{\sqrt{76}}{20} \right) \)[/tex]

2. Create Vectors:
The direction vectors for rays [tex]\( R_p \)[/tex] and [tex]\( R_q \)[/tex] originating from the origin (0,0) passing through points [tex]\( p \)[/tex] and [tex]\( q \)[/tex] are:
- Vector [tex]\( \mathbf{p} = \left( \frac{3}{13}, \frac{\sqrt{160}}{13} \right) \)[/tex]
- Vector [tex]\( \mathbf{q} = \left( \frac{18}{20}, \frac{\sqrt{76}}{20} \right) \)[/tex]

3. Calculate the Dot Product:
The dot product ([tex]\(\cdot\)[/tex]) of two vectors [tex]\( \mathbf{a} = (a_1, a_2) \)[/tex] and [tex]\( \mathbf{b} = (b_1, b_2) \)[/tex] is given by:
[tex]\[
\mathbf{a} \cdot \mathbf{b} = a_1 \cdot b_1 + a_2 \cdot b_2
\][/tex]
For our vectors:
[tex]\[
\mathbf{p} \cdot \mathbf{q} \approx 0.6318
\][/tex]

4. Calculate Magnitudes of the Vectors:
The magnitude ([tex]\(||\mathbf{a}||\)[/tex]) of a vector [tex]\(\mathbf{a} = (a_1, a_2)\)[/tex] is:
[tex]\[
||\mathbf{a}|| = \sqrt{a_1^2 + a_2^2}
\][/tex]
For both [tex]\(\mathbf{p}\)[/tex] and [tex]\(\mathbf{q}\)[/tex], the magnitudes are 1 since:
[tex]\[
||\mathbf{p}|| = ||\mathbf{q}|| = 1
\][/tex]

5. Calculate the Cosine of the Angle:
The cosine of the angle [tex]\(\theta\)[/tex] between two vectors is given by:
[tex]\[
\cos \theta = \frac{\mathbf{p} \cdot \mathbf{q}}{||\mathbf{p}|| \cdot ||\mathbf{q}||}
\][/tex]
Substituting the known values:
[tex]\[
\cos \theta \approx 0.6318
\][/tex]

6. Find the Angle in Radians and Degrees:
To find the angle (in radians), we use the arccos function:
[tex]\[
\theta \approx \arccos(0.6318) \approx 0.887 \text{ radians}
\][/tex]
To convert radians to degrees:
[tex]\[
\theta \approx 0.887 \times \frac{180}{\pi} \approx 50.82 \text{ degrees}
\][/tex]

Thus, the angle [tex]\(\angle R_p R_q\)[/tex] is approximately [tex]\(50.82^\circ\)[/tex].