Answer :
We need to find the missing number [tex]$x$[/tex] in the equation
[tex]$$
\frac{16}{x} = \frac{32}{40}.
$$[/tex]
Step 1: Cross Multiply
Multiply both sides of the equation by [tex]$x$[/tex] and by [tex]$40$[/tex] to eliminate the fractions:
[tex]$$
16 \cdot 40 = 32 \cdot x.
$$[/tex]
Step 2: Simplify the Equation
Calculate the product on the left side:
[tex]$$
16 \cdot 40 = 640.
$$[/tex]
This gives us:
[tex]$$
640 = 32x.
$$[/tex]
Step 3: Solve for [tex]$x$[/tex]
Divide both sides of the equation by [tex]$32$[/tex]:
[tex]$$
x = \frac{640}{32}.
$$[/tex]
Simplify the fraction:
[tex]$$
x = 20.
$$[/tex]
Conclusion
The missing number that makes the fractions equal is [tex]$\boxed{20}$[/tex].
[tex]$$
\frac{16}{x} = \frac{32}{40}.
$$[/tex]
Step 1: Cross Multiply
Multiply both sides of the equation by [tex]$x$[/tex] and by [tex]$40$[/tex] to eliminate the fractions:
[tex]$$
16 \cdot 40 = 32 \cdot x.
$$[/tex]
Step 2: Simplify the Equation
Calculate the product on the left side:
[tex]$$
16 \cdot 40 = 640.
$$[/tex]
This gives us:
[tex]$$
640 = 32x.
$$[/tex]
Step 3: Solve for [tex]$x$[/tex]
Divide both sides of the equation by [tex]$32$[/tex]:
[tex]$$
x = \frac{640}{32}.
$$[/tex]
Simplify the fraction:
[tex]$$
x = 20.
$$[/tex]
Conclusion
The missing number that makes the fractions equal is [tex]$\boxed{20}$[/tex].