College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Consider the function [tex]f(x) = 12x^5 + 45x^4 - 80x^3 + 6[/tex].

The function [tex]f(x)[/tex] has inflection points at (reading from left to right) [tex]x = D[/tex], [tex]E[/tex], and [tex]F[/tex], where:

- [tex]D[/tex] is [tex]\square[/tex]
- [tex]E[/tex] is [tex]\square[/tex]
- [tex]F[/tex] is [tex]\square[/tex]

For each of the following intervals, indicate whether [tex]f(x)[/tex] is concave up or concave down:

1. [tex](-\infty, D)[/tex]: [tex]\square[/tex]
2. [tex](D, E)[/tex]: [tex]\square[/tex]
3. [tex](E, F)[/tex]: [tex]\square[/tex]
4. [tex](F, \infty)[/tex]: [tex]\square[/tex]

Answer :

To determine the inflection points and the intervals of concavity for the function [tex]\( f(x) = 12x^5 + 45x^4 - 80x^3 + 6 \)[/tex], we need to follow these steps:

1. Find the second derivative [tex]\( f''(x) \)[/tex].
[tex]\[
f''(x) = \frac{d^2}{dx^2} \left( 12x^5 + 45x^4 - 80x^3 + 6 \right)
\][/tex]

2. Calculate the first derivative [tex]\( f'(x) \)[/tex].
[tex]\[
f'(x) = \frac{d}{dx} \left( 12x^5 + 45x^4 - 80x^3 + 6 \right)
\][/tex]
[tex]\[
f'(x) = 60x^4 + 180x^3 - 240x^2
\][/tex]

3. Calculate the second derivative [tex]\( f''(x) \)[/tex].
[tex]\[
f''(x) = \frac{d}{dx} \left( 60x^4 + 180x^3 - 240x^2 \right)
\][/tex]
[tex]\[
f''(x) = 240x^3 + 540x^2 - 480x
\][/tex]

4. Set the second derivative to zero to find the critical points (potential inflection points).
[tex]\[
240x^3 + 540x^2 - 480x = 0
\][/tex]

5. Factor the equation.
[tex]\[
240x(x^2 + 2.25x - 2) = 0
\][/tex]

This gives us the roots:
[tex]\[ 240x = 0 \quad \text{or} \quad x^2 + 2.25x - 2 = 0 \][/tex]

Solving for [tex]\( x \)[/tex]:
[tex]\[
x = 0
\][/tex]
[tex]\[
x^2 + 2.25x - 2 = 0
\][/tex]

Using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:
[tex]\[
x = \frac{-2.25 \pm \sqrt{(2.25)^2 + 8}}{2}
\][/tex]
[tex]\[
x = \frac{-2.25 \pm \sqrt{12.3125}}{2}
\][/tex]
[tex]\[
x \approx \frac{-2.25 \pm 3.51}{2}
\][/tex]

The roots are:
[tex]\[
x \approx 0.63 \quad \text{and} \quad x \approx -2.88
\][/tex]

6. Identify the inflection points [tex]\( D, E, \)[/tex] and [tex]\( F \)[/tex]:
[tex]\[
D = -2.88, \quad E = 0, \quad F = 0.63
\][/tex]

7. Evaluate the concavity in each interval:
- For the interval [tex]\( (-\infty, D) \)[/tex]:
Choose a test point like [tex]\( x = -3 \)[/tex]:
[tex]\[
f''(-3) = 240(-3)^3 + 540(-3)^2 - 480(-3)
\][/tex]
[tex]\[
f''(-3) = -6480 + 4860 + 1440 = -180
\][/tex]
Since [tex]\( f''(-3) < 0 \)[/tex], the interval [tex]\((- \infty, D)\)[/tex] is concave down.

- For the interval [tex]\( (D, E) \)[/tex]:
Choose a test point like [tex]\( x = -1.5 \)[/tex]:
[tex]\[
f''(-1.5) = 240(-1.5)^3 + 540(-1.5)^2 - 480(-1.5)
\][/tex]
[tex]\[
f''(-1.5) = -810 + 1215 + 720 = 1125
\][/tex]
Since [tex]\( f''(-1.5) > 0 \)[/tex], the interval [tex]\( (D, E) \)[/tex] is concave up.

- For the interval [tex]\( (E, F) \)[/tex]:
Choose a test point like [tex]\( x = 0.5 \)[/tex]:
[tex]\[
f''(0.5) = 240(0.5)^3 + 540(0.5)^2 - 480(0.5)
\][/tex]
[tex]\[
f''(0.5) = 30 + 135 - 240 = -75
\][/tex]
Since [tex]\( f''(0.5) < 0 \)[/tex], the interval [tex]\( (E, F) \)[/tex] is concave down.

- For the interval [tex]\( (F, \infty) \)[/tex]:
Choose a test point like [tex]\( x = 1 \)[/tex]:
[tex]\[
f''(1) = 240(1)^3 + 540(1)^2 - 480(1)
\][/tex]
[tex]\[
f''(1) = 240 + 540 - 480 = 300
\][/tex]
Since [tex]\( f''(1) > 0 \)[/tex], the interval [tex]\( (F, \infty) \)[/tex] is concave up.

In summary:

- [tex]\( D = -2.88 \)[/tex]
- [tex]\( E = 0 \)[/tex]
- [tex]\( F = 0.63 \)[/tex]

Concavities:
- [tex]\( (-\infty, D) \)[/tex]: concave down
- [tex]\( (D, E) \)[/tex]: concave up
- [tex]\( (E, F) \)[/tex]: concave down
- [tex]\( (F, \infty) \)[/tex]: concave up