High School

Consider the following probability distribution:

\[
\begin{array}{cc}
X & F(X) \\
40 & 0.40 \\
50 & 0.10 \\
60 & 0.30 \\
70 & 0.20 \\
\end{array}
\]

The variance of \(X\) equals:

A. 12.042

B. 145

C. 11.874

D. 141

Answer :

The variance of X is 141. Therefore, the correct answer is: d. 141

To calculate the variance of a discrete random variable, you can use the following formula:

[tex]Var(X) = \sum_{x} (x - \mu)^2 \cdot P(x)[/tex]

Where:

- x represents each possible value of the random variable.

- μ is the mean (expected value) of the random variable.

- P(x) is the probability of the random variable taking the value x.

Given the probability distribution:

X | F(x)

------------

40 | 0.40

50 | 0.10

60 | 0.30

70 | 0.20

First, calculate the mean (expected value) of X:

μ = Σ [ x * P(x) ]

= (40 * 0.40) + (50 * 0.10) + (60 * 0.30) + (70 * 0.20)

= 16 + 5 + 18 + 14

= 53

Now, calculate the variance using the formula:

Var(X) = Σ [ (x - μ)² * P(x) ]

= ( (40 - 53)² * 0.40 ) + ( (50 - 53)² * 0.10 ) + ( (60 - 53)² * 0.30 ) + ( (70 - 53)² * 0.20 )

= (169 * 0.40) + (9 * 0.10) + (49 * 0.30) + (289 * 0.20)

= 67.6 + 0.9 + 14.7 + 57.8

= 141

So, the variance of X is 141. Therefore, the correct answer is: d. 141

Learn more about Variance here:

https://brainly.com/question/14116780

#SPJ11