College

Choose the correct simplification of the expression [tex]\left(5 x y^5\right)^2\left(y^3\right)^4[/tex].

A. [tex]25 x^2 y^{22}[/tex]
B. [tex]10 x^2 y^{22}[/tex]
C. [tex]25 x^3 y^{14}[/tex]
D. [tex]10 x^3 y^{14}[/tex]

Answer :

Let's simplify the expression [tex]\((5xy^5)^2(y^3)^4\)[/tex] step by step.

1. Simplify [tex]\((5xy^5)^2\)[/tex]:

- The expression [tex]\((5xy^5)^2\)[/tex] involves raising each part inside the parentheses to the power of 2.
- For the number 5: [tex]\((5)^2 = 25\)[/tex].
- For [tex]\(x\)[/tex]: Since it's [tex]\(x^1\)[/tex], [tex]\((x^1)^2 = x^{1 \times 2} = x^2\)[/tex].
- For [tex]\(y^5\)[/tex]: [tex]\((y^5)^2 = y^{5 \times 2} = y^{10}\)[/tex].

So, [tex]\((5xy^5)^2 = 25x^2y^{10}\)[/tex].

2. Simplify [tex]\((y^3)^4\)[/tex]:

- For [tex]\(y^3\)[/tex], raise it to the power of 4: [tex]\((y^3)^4 = y^{3 \times 4} = y^{12}\)[/tex].

3. Combine the results:

Now we need to multiply the expressions we simplified:
[tex]\[
25x^2y^{10} \times y^{12}
\][/tex]

- Coefficients: The number is already 25.
- For [tex]\(x\)[/tex]: There is no x in the second expression, so it remains [tex]\(x^2\)[/tex].
- For [tex]\(y\)[/tex]: Combine the exponents as they have the same base:
[tex]\[
y^{10} \times y^{12} = y^{10 + 12} = y^{22}
\][/tex]

Putting it all together, the expression simplifies to:
[tex]\[
25x^2y^{22}
\][/tex]

Therefore, the correct simplification of the expression is [tex]\(25x^2y^{22}\)[/tex].